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PREFACE

Before the first edition of this book appeared, a generation or more
ago, modern geometry was practically nonexistent as a subject in the
curriculum of American colleges and universities. Moreover, the edu-
cational experts, both in the academic world and in the editorial offices
of publishing houses, were almost unanimous in their opinion that the
colleges felt no need for this subject and would take no notice of it if
an avenue of access to it were opened to them.

The academic climate confronting this second edition is radically
different. College geometry has a firm footing in the vast majority of
schools of collegiate level in this country, both large and small, includ-
ing a considerable number of predominantly technical schools. Com-
petent and often even enthusiastic personnel are available to teach the
subject.

These changes naturally had to be considered in preparing a new
edition. The plan of the book, which gained for it so many sincere
friends and consistent users, has been retained in its entirety, but it
was deemed necessary to rewrite practically all of the text and to
broaden its horizon by adding a large amount of new material.

Construction problems continue to be stressed in the first part of
the book, though some of the less important topics have been omitted
in favor of other types of material. All other topics in the original
edition have been amplified and new topics have been added. These
changes are particularly evident in the chapter dealing with the recent
geometry of the triangle. A new chapter on the quadrilateral has
been included.

Many proofs have been simplified. For a considerable number of
others, new proofs, shorter and more appealing, have been substituted.
The illustrative examples have in most cases been replaced by new ones.

The harmonic ratio is now introduced much earlier in the course.
This change offered an opportunity to simplify the presentation of
some topics and enhance their interest.
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Viii PREFACE

The book has been enriched by the addition of numerous exercises
of varying degrees of difficulty. A goodly portion of them are note-
worthy propositions in their own right, which could, and perhaps
should, have their place in the text, space permitting. Those who use
the book for reference may be able to draw upon these exercises as a
convenient source of instructional material.

N. A.-C.
Norman, Oklahoma
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TO THE INSTRUCTOR

This book contains much more material than it is possible to cover
conveniently with an average college class that meets, say, three times
a week for one semester. Some instructors circumvent the difficulty
by following the book from its beginning to whatever part can be
reached during the term. A good deal can be said in favor of such a
procedure.

However, a judicious selection of material in different parts of the
book will give the student a better idea of the scope of modern geometry
and will materially contribute to the broadening of his geometrical
outlook.

The instructor preferring this alternative can make selections and
omissions to suit his own needs and preferences. As a rough and
tentative guide the following omissions are suggested. Chap. II,
arts. 27, 28, 43, 44, 51-53. Chap. III, arts. 70, 71, 72, 78, 83, 84,
91-93, 102-104, 106-110, 114, 115, 130, 168, 181, 195-200, 203, 205,
211-217, 229-239. Chap. IV, Chap. V, arts. 284-287, 292, 298-305.
Chap. VI, arts. 308, 323, 324, 337-344. Chap. VIII, arts. 362, 372,
398, 399, 418-420, 431, 432, 438, 439, 463-470, 479-490, 495, 499-517.
Chap. IX, Chap. X, arts. 583-587, 591, 592, 595, 596, 614- 624, 639-
648, 658-665, 672-683.

The text of the book does not depend upon the exercises, so that
the book can be read without reference to them. The fact that it is
essential for the learner to work the exercises needs no argument.

The average student may be expected to solve a considerable part
of the groups of problems which follow immediately the various sub-
divisions of the book. The supplementary exercises are intended as
a challenge to the more industrious, more ambitious student. The
lists of questions given under the headings of "Review Exercises" and
"Miscellaneous Exercises" may appeal primarily to those who have
an enduring interest, either professional or avocational, in the subject
of modern geometry.

xv





TO THE STUDENT

The text. Novices to the art of mathematical demonstrations may,
and sometimes do, form the opinion that memory plays no role in
mathematics. They assume that mathematical results are obtained
by reasoning, and that they always may be restored by an appropriate
argument. Obviously, such' an opinion is superficial. A mathe-
matical proof of a proposition is an attempt to show that this new
proposition is a consequence of definitions and theorems already
accepted as valid. If the reasoner does not have the appropriate
propositions available in his mind, the task before him is well-nigh
hopeless, if not outright impossible.

The student who embarks upon the study of college geometry should
have accessible a book on high-school geometry, preferably his own
text of those happy high-school days. Whenever a statement in
College Geometry refers, explicitly or implicitly, to a proposition in the
elementary text, the student will do well to locate that proposition
and enter the precise reference in a notebook kept for the purpose, or
in the margin of his college book. It would be of value to mark refer-
ences to College Geometry on the margin of the corresponding prop-
ositions of the high-school book.

The cross references in this book are to the preceding parts of the
text. Thus art. 189 harks back to art. 73. When reading art. 189,
it may be worth while to make a record of this fact in connection with
art. 73. Such a system of "forward" references may be a valuable
help in reviewing the course and may facilitate the assimilation of the
contents of the book.

Figures. The student will do well to cultivate the habit of drawing
his own figures while reading the book, and to draw a separate figure
for each proposition. A rough free-hand sketch is sufficient in most
cases. Where a more complex figure is required, the corresponding
figure in the book may be consulted as a guide to the disposition of
the various parts and elements. Such practices help to fix the prop-
ositions in the reader's mind.

xvil



Xviii TO THE STUDENT

The Exercises. The purpose of exercises in the study of mathe-
matics is usually two-fold. They provide the reader with a check on
his mastery of the contents of the course, and also with an oppor-
tunity to test his ability to use the material by applying the methods
presented in the book. These two phases are, of course, not unrelated.

It goes without saying that the student cannot possibly solve a
problem if he does not know what the problem is. To argue the
contrary would be nothing short of ridiculous. In the light of experi-
ence, however, it may be useful to insist on this point. We begin our
problem-solving career with such simple statements that there is no
doubt as to our understanding their contents. When, in the course
of time, conditions change radically, we continue, by force of habit,
to assume an instantaneous knowledge of the statement of the problem.

Like the problems in most books on geometry, nearly all the prob-
lems in College Geometry are verbal problems. Nevertheless, surpris-
ing as it may sound, it is often difficult to know what a given problem
is. More or less effort may be required to determine its meaning.
Clearly, this effort of understanding the problem must be made first,
however, before any steps toward a solution are undertaken. In fact,
the mastery of the meaning of the problem may be the principal part,
and often is the most difficult part, of its solution.

To make sure that he understands the statement of the question,
the student should repeat its text verbally, without using the book,
or, still better, write the text in full, from memory. Moreover, he
must have in mind so clearly the meaning of the spoken or written
sentences that he will be able to explain a problem, in his own words,
to anyone, equipped with the necessary information, who has never
before heard of the problem.

Finally, it is essential to draw the figure the question deals with.
A simple free-hand illustration will usually suffice. In some cases a
carefully executed drawing may provide valuable suggestions.

Obviously, no infallible rule can be given which will lead to the solu-
tion of all problems. When the student has made sure of the meaning
of the problem, has listed accurately the given elements of the problem
and the elements wanted, and has before him an adequate figure, he
will be well armed for his task, and with such help even a recalcitrant
question may eventually become more manageable.

The student must not expect that a solution will invariably occur
to him as soon as he has finished reading the text of a question. If



TO THE STUDENT xix

it does, as it often may, well and good. But, in most cases, a question
requires, above all, patience. A number of unsuccessful starts is not
unusual, and need not cause discouragement. The successful solver
of problems is the one whose determination - whose will to overcome
obstacles - grows and increases with the resistance encountered.
Then, after the light breaks through, and the goal has been reached,
his is the reward of a gratifying sense of triumph, of achievement.





GEOMETRIC CONSTRUCTIONS

A. PRELIMINARIES

1. Notation. We shall frequently denote by:
A, B, C, .. the vertices or the corresponding angles of a polygon;
a, b, c, ... the sides of the polygon (in the case of a triangle, the

small letter will denote the side opposite the vertex indicated by the
same capital letter);

2 p the perimeter of a triangle;
h hb, h the altitudes and ma, mb, mm the medians of a triangle ABC

corresponding to the sides a, b, c;
ta, tb, t, the internal, and t,', tb , t,' the external, bisectors of the

angles A, B, C;
R, r the radii of the circumscribed and inscribed circles (for the sake

of brevity, we shall use the terms circunwircle, circumradius, circum-
center, and incircle, inradius, incenter);

(A, r) the circle having the point A for center and the segment r for
radius;

M = (PQ, RS) the point of intersection M of the two lines PQ and
RS.
2. Basic Constructions. Frequent use will be made of the following
constructions:

To divide a given segment into a given number of equal parts.
To divide a given segment in a given ratio (i) internally; (ii) ex-

ternally (§ 54).
To construct the fourth proportional to three given segments.

I



2 GEOMETRIC CONSTRUCTIONS [Ch. I, §§ 2, 3

To construct the mean proportional to two given segments.
To construct a square equivalent to a given (i) rectangle; (ii) tri-

angle.
To construct a square equivalent to the sum of two, three, or more

given squares.
To construct two segments given their sum and their difference.
To construct the tangents from a given point to a given circle.
To construct the internal and the external common tangents of two

given circles.

EXERCISES

Construct a triangle, given:
1. a,b,c. 4. a,ha,B. 6. a,B,tb.
2. a, b, C. 5. a, b,rn0. 7.

3. a, B, C.

Construct a right triangle, with its right angle at A, given:

8. a, B. 10. a, b.
9. b, C. 11. b, c.

Construct a parallelogram ABCD, given:

12. AB, BC, AC. 13. AB, AC, B. 14. AB, BD, LABD.

Construct a quadrilateral ABCD, given:

15. A, B, C, AB, AD. 16. AB, BC, CD, B, C. 17. A, B, C, AD, CD.

18. With a given radius to draw a circle tangent at a given point to a given (i) line;
(ii) circle.

19. Through two given points to draw a circle (i) having a given radius; (ii) having
its center on a given line.

20. To a given circle to draw a tangent having a given direction.
21. To divide a given segment internally and externally in the ratio of the squares

of two given segments p, q. (Hint. If AD is the perpendicular to the hypote-
nuse BC of the right triangle ABC, ABs: AC2 = BD: DC.)

22. Construct a right triangle, given the hypotenuse and the ratio of the squares of
the legs.

23. Given the segments a, p, q, construct the segment x so that x$: a2 = p: q.
24. Construct an equilateral triangle equivalent to a given triangle.

3. Suggestion. Most of the preceding problems are stated in con-
ventional symbols. It is instructive to state them in words. For
instance, Exercise 4 may be stated as follows: Construct a triangle
given the base, the corresponding altitude, and one of the base angles.



Ch. 1, § 4, 5] GENERAL METHOD OF SOLUTION

B. GENERAL METHOD OF SOLUTION OF CONSTRUCTION
PROBLEMS

3

4. Analytic Method. Some construction problems are direct applica-
tions of known propositions and their solutions are almost immediately
apparent. Example: Construct an equilateral triangle.

If the solution of a problem is more involved, but the solution is
known, it may be presented by starting with an operation which we
know how to perform, followed by a series of operations of this kind,
until the goal is reached.'

This procedure is called the synthetic method of solution of prob-
lems. It is used to present the solutions of problems in textbooks.

However, this method cannot be followed when one is confronted
with a problem the solution of which is not apparent, for it offers no
clue as to what the first step shall be, and the possible first steps are
far too numerous to be tried at random.

On the other hand, we do know definitely what the problem is - we
know what figure we want to obtain in the end. It is therefore helpful
to start with this very figure, provisionally taken for granted. By a
careful and attentive study of this figure a way may be discovered
leading to the desired solution. The procedure, which is called the
analytic method of solving problems, consists, in outline, of the follow-
ing steps:

ANALYSIS. Assuming the problem solved, draw a figure approxi-
mately satisfying the conditions of the problem and investigate how
the given parts and the unknown parts of the figure are related to one
another, until you discover a relation that may be used for the con-
struction of the required figure.

CONSTRUCTION. Utilizing the information obtained in the analysis,
carry out the actual construction.

PROOF. Show that the figure thus constructed satisfies all the re-
quirements of the problem.

DISCUSSION. Discuss the problem as to the conditions of its possi-
bility, the number of solutions, etc.

The following examples illustrate the method.
5. Problem. Two points A, B are marked on two given parallel lines
x, y. Through a given point C, not on either of these lines, to draw a
secant CA'B' meeting x, y in A', B' so that the segments AA', BB' shall
be proportional to two given segments p, q.
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0

p

q
FIG. 1

ANALYSIS. Let CA'B' be the required line, so that (Fig. 1):

AA':BB' = p:q,

and let 0 = (AB, A'B'). The two triangles OA A', OBB' are similar;
hence:

AO:BO = AA':BB'.

But the latter ratio is known; hence the point 0 divides the given
segment AB in the given ratio p: q. Thus we may construct 0, and
OC is the required line.

CONSTRUCTION. Construct the point 0 such that:

AO: BO = p:q.

The points 0 and C determine the required line.
PROOF. Left to the student.
DISCUSSION. There are two points, 0 and 0, which divide the

given segment AB in the given ratio p: q, one externally and the other
internally, and we can always construct these two points; hence the
problem has two solutions if neither of the lines CO, CO' is parallel to
the lines x, y.

Consider the case when p = q.
-6. Problem. Through a given point, outside a given circle, to draw
a secant so that the chord intercepted on it by the circle shall subtend at the
center an angle equal to the acute angle between the required secant and
the diameter, produced, passing through the given point.
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ANALYSIS. Let the required secant MBA (Fig. 2) through the given
point M cut the given circle, center 0, in A and B. The two triangles
AOB, AOM have the angle A in common and, by assumption, angle
AOB = angle M; hence the two triangles are equiangular. But the
triangle AOB is isosceles; hence the triangle AOM is also isosceles,
and MA = MO. Now the length MO is known; hence the distance
MA of the point A from M is known, so that the point A may be
constructed, and the secant MA may be drawn.

CONSTRUCTION. Draw the circle (M, MO). If A is a point common
to the two circles, the line MA satisfies the conditions of the problem.

PROoF. Let the line MA meet the given circle again in B. The
triangles AOB, AOM are isosceles, for OA = OB, MA = MO, as radii
of the same circle, and the angle A is a common base angle in the
two triangles; hence the angles AOB and M opposite the respective
bases AB and AO in the two triangles are equal. Thus MA is the
required line.

DISCUSSION. We can always draw the circle (M, MO) which will
cut the given circle in two points A and A'; hence the problem always
has two solutions, symmetrical with respect to the line MO.

Could the Line MBA be drawn so that the angle AOB would be equal
to the obtuse angle between MBA and MO? If that were possible,
we would have:

Z AOB + ZOMA = 180°;
hence:

LOMA = LOAB + LOBA.
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But in the triangle OBM we have:

Z M < LOBA.

We are thus led to a contradiction; hence a line satisfying the imposed
condition cannot be drawn.

Consider the problem when the point M is given inside the given
circle, or on the given circle.

FIG. 3

7. Problem. On the sides AB, AC, produced if necessary, of the tri-
angle ABC to find two points D, E such that the segments AD, DE, and
EC shall be equal (Fig. 3).

ANALYSIS. Suppose that the points D, E satisfy the conditions of
the problem, and let the parallels through B to the lines DE, DC meet
AC in K, L. The two triangles ADE, ABK are similar, and since
AD = DE, by assumption, we have AB = BK, and the point K is
readily constructed.

Again, the triangles DEC, BKL are similar, and since DE = EC, by
assumption, we have BK = KL; hence L is known.

CONSTRUCTION. Draw the circle (B, BA) cutting AC again in K.
Draw the circle (K, BA) cutting AC in L. The parallel through C to
BL meets the line AB in the first required point D, and the parallel
through D to BK meets AC in the second required point E.

PROOF. The steps in the proof are the same as those in the analysis,
but taken in reverse order.

DISCUSSION. The point K always has one and only one position.
When K is constructed we find two positions for L, and we have two
solutions, DE and D'E', for the problem.

If A is a right angle the problem becomes trivial.
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8. Problem. On two given circles find two points a given distance apart
and such that the line joining them shall have a given direction.

ANALYSIS. Let P, Q be the required points on the two given circles
(A), (B). Through the center A of (A) (Fig. 4) draw a parallel to
PQ and lay off AR = PQ. In the parallelogram APQR we have
RQ = AP. But AP is a radius of a given circle; hence the length RQ is
known. On the other hand the point R is known, for both the direc-
tion and the length of AR are given; hence the point Q may be con-
structed. The point P is then readily found.

CONSTRUCTION. Through the center A of one of the two given
circles, (A), draw a line having the given direction and lay off AR
equal to the given length, m. With R as center and radius equal to
the radius of (A) draw a circle (A'), meeting- the second given
circle in a point Q. Through Q draw a parallel to AR and lay off
QP = AR, so as to form a parallelogram in which AR is a side (and not
a diagonal). The points P, Q satisfy the conditions of the problem.

PROOF. The segment PQ has the given length and the given direc-
tion, by construction. The point Q was taken on the circle (B). In
order to show that P lies on the circle (A) it is enough to point out that
in the parallelogram ARQP we have AP = RQ, and RQ is equal to the
radius of (A), by construction.

M

FIG. 4 FIG. b

DISCUSSION. It is always possible to draw through A a line having
the given direction. The point R may then be marked on either side
of A, so that we always have for R two positions, R and R'. The
circle with either of these points as center and radius equal to the radius
of (A) may cut (B) in two points, or may be tangent to (B), or may
not cut (B) at all. Consequently the problem may have four, three,
two, one, or no solutions.

Figure 5 illustrates the case when there are four solutions.
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9. Problem. Construct a square so that each side, or the side produced,
shall pass through a given point.

ANALYSIS. Let PQRS be a square whose sides PQ, QR, RS, SP pass,
respectively, through the given points A, B, C, D (Fig. 6).

If the perpendicular from D upon AC meets the line QR in F, then
DF = AC. Indeed, if we leave the line DF fixed while we revolve the
square, and the line AC with it, around its center by an angle of 90° so
that the sides PQ, QR, RS, SP shall occupy the present positions of
QR, RS, SP, PQ, respectively, the line AC will become parallel to DF;
hence AC = DF.

Q B
FIG. 6

F R

That DF = AC may also be seen in another way. Let the parallels
through Q to the lines AC, DF meet RS, SP in the points K, L. In
the right triangles PQL, QRK we have:

L PQL = L LQR - L PQR = LLQR - LLQK = L KQR.

Thus the two triangles are equiangular, and since PQ = QR, by as-
sumption, they are congruent; hence QL = QK. But QL = DF,
QK = AC; hence AC = DF.

The equality of these two segments suggests the following
CONSTRUCTION. From the given point D drop a perpendicular DF

upon the given line AC and lay off DF = AC. Join F to the fourth
given point B, and through D draw a parallel to BF. These two paral-
lel lines and the perpendiculars to them through A and C form the
required square PQRS.
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FIG. 7

PBoor. From the construction it follows immediately that PQRS
is a rectangle whose sides pass respectively through the given points
A, B, C, D.

To show that this rectangle is a square we consider again the tri-
angles PQL, QRK, and, as in the analysis, we show that they are equi-
angular. Now DF = AC, by construction; hence QL = QK; there-
fore the triangles are congruent, and QP = QR.

DISCUSSION. We obtain a second solution if we make the sym-
metric F' of F with respect to D play the role of the point F.

Moreover, the perpendicular from D may also be dropped upon
either of the other two sides AB, BC of the triangle ABC, and we will
obtain two more pairs of solutions. The problem thus has, in general,
six different solutions. It is, of course, immaterial to which of the
four given points we assign the role of the point D.

Should the point F happen to coincide with B, the direction of the
line BF becomes indeterminate, that is, any line through B may be
taken as a side of the required square, and the figure completed ac-
cordingly. Thus if the segment joining two of the four given points is
equal to and perpendicular to the segment joining the remaining two
points, the problem has an infinite number of solutions.

Figure 7 presents the case when the problem has six solutions.
10. Suggestions. The figure for the analysis may be drawn freehand
and the given elements arranged as conveniently as possible to give a
correct idea of the problem and to exhibit the existing interrelations
between the elements involved.
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The construction should be carried out with ruler and compasses.
The given magnitudes, like segments and angles, should be set down
before any construction is attempted, and used in the actual construc-
tion. If the problem involves points and lines given in position, these
data should be marked in the figure before any constructional opera-
tions are begun.

In the discussion each step of the construction should be examined
for the number of ways it may be carried out and for the number of
lines or points of intersection the considered step will yield.

The different aspects which the problem may assume, as indicated
by the discussion, should be illustrated by suitable figures. As a
general rule a problem or a figure has many more possibilities than is at
first apparent. A careful study of a problem will often reveal vistas
which in a more casual treatment may readily escape notice.

EXERCISES

1. Through a given point to draw a line making equal angles with the sides of a
given angle.

2. Through a given point to draw a line so that two given parallel lines shall inter-
cept on it a segment of given length.

3. Through one of the two points of intersection of two equal circles to draw two
equal chords, one in each circle, forming a given angle.

4. Through a given point of a circle to draw a chord which shall be twice as long
as the distance of this chord from the center of the circle.

5. On a produced diameter of a given circle to find a point such that the tangents
drawn from it to this circle shall be equal to the radius of the circle.

6. With a given point as center to describe a circle which shall bisect a given circle,
that is, the common chord shall be a diameter of the given circle.

7. Through two given points to draw a circle so that its common chord with a
given circle shall be parallel to a given line.

8. Construct a parallelogram so that three of its sides shall have for midpoints
three given points.

9. On a given leg of a right triangle to find a point equidistant from the hypotenuse
and from the vertex of the right angle.

10. With two given points as centers to draw equal circles so that one of their com-
mon tangents shall (i) pass through a (third) given point; (ii) be tangent to a
given circle.

11. Through a given point to draw a line so that the two chords intercepted on it by
two given equal circles shall be equal.

12. To a given circle, located between two parallel lines, to draw a tangent so that
the segment intercepted on it by the given parallels shall have a given length.

13. Construct a right triangle given the hypotenuse and the distance from the
middle point of the hypotenuse to one leg.
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14. Construct a triangle given an altitude and the circumradii (i.e., the radii of the
circumscribed circles) of the two triangles into which this altitude divides the
required triangle.

C. GEOMETRIC LOCI

ii. Important Loci. In a great many cases the solution of a geometric
problem depends upon the finding of a point which satisfies certain
conditions. For instance, in order to draw a circle passing through
three given points, it is necessary to find a point, the center of the circle,
equidistant from the three given points.

The problem of drawing a tangent from a given point to a given circle
is solved when we find the point of contact, i.e., the point on the circle
at which a right angle is subtended by the segment limited by the given
point and the center of the given circle.

If one of the conditions which the required point must satisfy be set
aside, the problem may have many solutions. However, the point
will not become arbitrary, but will move along a certain path, the geo-
metric locus of the point. Now by taking into consideration the dis-
carded condition and setting aside another, we make the required
point describe another geometric locus. A point common to the two
loci is the point sought.

The problem of drawing a circle passing through three given points
may again serve as an illustration. In order to find a point equidis-
tant from three given points, A, B, C, we disregard one of the given
points, say C, and try to find a point equidistant from A and B.
Thus stated, the problem has many solutions, the required point being
any point of the perpendicular bisector of the segment AB. Now
considering the point C and leaving out the point A, the required
point describes the perpendicular bisector of the segment BC. The
required point lies at the intersection of the two perpendicular bi-
sectors.

The nature of the loci obtained depends upon the condition omitted.
In elementary geometry these conditions must be such that the loci
shall consist of straight lines and circles. The neatness and simplicity
of a solution depend very largely upon the judicious choice of the
geometric loci.

Knowledge about a considerable number of geometric loci may
often enable one to discover immediately where the required point is
to be located.
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The following are the most important and the most frequently useful
geometric loci:

Locus 1. The locus of a point in a plane at a given distance from a
given point is a circle having the given point for center and the given dis-
tance for radius.

Locus 2. The locus of a point from which tangents of given length can
be drawn to a given circle is a circle concentric with the given circle.

Locus 3. The locus of a point at a given distance from a given line
consists of two lines parallel to the given line.

Locus 4. The locus of a point equidistant from two given points is
the perpendicular bisector of the segment determined by the two points.

For the sake of brevity the expression perpendicular bisector may
be replaced conveniently by the term mediator.

Locus 5. The locus of a point equidistant from two intersecting lines
indefinitely produced consists of the two bisectors of the angles formed by
the two given lines.

Locus 6. The locus of a point such that the tangents from it to a given
circle form a given angle, or, more briefly, at which the circle subtends a
given angle, is a circle concentric with the given circle.

Locus 7. The locus of a point, on one side of a given segment, at which
this segment subtends a given angle is an arc of a circle passing through
the ends of the segment.

Let M (Fig. 8) be a point of the locus so that the angle AMB is
equal to the given angle. Pass a circle through the three points
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A, B, M. At any point M' of the arc AMB the segment AB subtends
the same angle as at M; hence every point of the arc AMB belongs
to the required locus. On the other hand, any point N not on the
arc AMB will lie either inside or outside this arc. In the first case
the angle ANB will be larger, and in the second case smaller, than
the angle AMB. Hence N does not belong to the locus.

The tangent AT to the circle AMB at the point A makes an angle
with AB equal to the angle AMB. Hence AT may be drawn. The
construction of the circle AMB is therefore reduced to the problem of
drawing a circle tangent to a given line AT at a given point A, and
passing through another given point B.

If the condition that the point M is to lie on a given side of the line
AB is disregarded, the required locus consists of two arcs of circles
congruent to each other and located on opposite sides of AB.

If the given angle is a right angle, the two arcs will be two semicircles
of the same radius, and we have: The locus of a point at which a given
segment subtends a right angle is the circle having this segment for diameter.

Locus 8. The locus of the midpoints of the chords of a given circle
which pass through a fixed point is a circle when the point lies inside of
or on the circle.

Let P (Fig. 9) be the given point, and M the midpoint of a chord AB
of the given circle (0), the chord passing through the given point P.

FiG. 9

The segment OP subtends a right angle at M; hence M lies on the circle
having OP for diameter (locus 7). On the other hand, any point M of
this circle joined to P determines a chord of the circle (0) which is
perpendicular to OM at M. Hence M is the midpoint of this chord
and therefore belongs to the required locus.
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If the point P lies outside of (0), any point M of the locus must lie
on the circle having OP for diameter, but not every point of this
circle belongs to the locus. The locus consists of the part of the circle
(OP) which lies within the given circle (0).

Locus 9. The locus of the midpoints of all the chords of given length
drawn in a given circle is a circle concentric with the given circle.

M

The chords are all tangent to this circle at their respective midpoints.
Locus 10. The locus of a point the sum of the squares of whose dis-

tances from two given points is equal to a given constant is a circle having
for center the midpoint of the given segment.

Let M (Fig. 10) be a point on the locus. Join M to the midpoint 0
of the segment A B determined by the two given points A, B and drop
the perpendicular MD from M upon AB. From the triangles AOM
and BOM we have:

AM2 = OM2 + OA2 - 2 OA OD. BM2 = OM2 + OB2 + 20B-OD.

But:
OA = 0B = AB;

hence, adding, we have:

AM2 + BM2 = 2 OM2 + 2 OA2.

Now AM2 + BM2 is, by assumption, equal to a given constant,
say s2, and OA2 = a2, where 2 a represents the length of the known
segment AB. Hence:

(1) OM2 = s2 - a2.
Thus the point M lies at a fixed distance OM from the fixed point 0,

and therefore the locus of M is a circle with 0 as center.
The radius OM may be constructed from the formula (1) as follows.

OM is one leg of a right triangle which has for its other leg half the
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length of the given segment AB, and for hypotenuse the side of a
square whose diagonal is equal to s.

Locus 11. The locus of a point the ratio of whose distances from two
fixed points is constant, is a circle, called the circle of Apollonius, or the
A pollonian circle.

Let A, B be the two given points (Fig. 11) and p:q the given ratio.
Let the points C, D divide the segment AB internally and externally
in the given ratio, and let M be any point of the locus. We have thus:

AC:CB = AD:DB = AM:MB = p:q.

The lines MC, MD divide the side AB of the triangle ABM inter-
nally and externally in the ratio of the sides MA, MB; hence MC, MD
are the internal and external bisectors of the angle AMB, and there-
fore are perpendicular to each other. Thus at any point M of the re-
quired locus the known segment CD subtends a right angle; hence M
lies on the circle having CD for diameter (§ 11, locus 7).

FIG. 11.

CONVERSELY. Let us take any point M on this circle and show that
this point belongs to the required locus. Through the point B draw
the parallels BE, BF to the lines MC, MD meeting AM in E, F.
respectively. We thus have:

(1) AM:ME = AC:CB, AM:FM = AD:BD.

But the second ratios in these proportions are equal, by construction,
hence:

therefore:

AM: ME = AM: FM;

ME = MF.
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Thus M is the midpoint of the segment EF. But EBF is a right
angle, for its sides are parallel to the sides of the right angle CMD,
and in the right triangle EBF the line MB is equal to half the
hypotenuse EF; hence, replacing in the first proportion of (1) the seg-
ment ME by the equal segment MB, we obtain:

AM:MB = AC:CB = p:q,

which shows that M belongs to the locus.
Where, in this converse proof, has the fact been used that M is a

point of the circle?
Note. The point C divides the segment AB internally so that

AC:CB = p:q. But we may also construct the point C' such that
BC': C'A = p : q. Similarly for the external point of division. Thus
the locus actually consists of two Apollonian circles, unless the order
in which the two given points are to be taken is specified in the state-
ment of the locus. In actual applications the nature of the problem
often indicates the order in which the points are to be considered.

M

FIG. 12

Locus 12. The locus of a point the difference of the squares of whose
distances from two given points is constant, is a straight line perpendicular
to the line joining the given points.

Let A, B (Fig. 12) be the two given points, and let M be a point
such that:

AM'-BM2=d22,
where d is given.

If MC is the perpendicular from M to AB, we have from right tri-
angles:

hence:

or:

AM2 - AC2 = MC2 = MB2 - BC2;

AM2 - MB2 = AC2 - BC2 = d2,

(AC - BC) (AC + BC) = d2,
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and therefore, denoting AC + BC = AB by a:
AC - BC = dl-, a.

This equality gives the difference of the segments AC and BC,
while the sum of these segments is equal to a. Thus these segments
may be constructed, and the point C located on the line AB. Hence
the foot C of the perpendicular dropped upon AB from any point M of
the locus is a fixed point of AB. Consequently the point M lies on the
perpendicular to the line AB at the point C. It is readily shown
that, conversely, every point of this perpendicular belongs to the locus.

Note. We will obtain a different line for the locus of M if we con-
sider that BM2 - AM2 = d2. In fact, the locus actually consists of
two straight lines, unless the order in which the two given points are
to be considered is specified in the statement of the locus.

EXERCISES

1. A variable parallel to the base BC of a triangle ABC meets AB, AC in D, E.
Show that the locus of the point M = (BE, CD) is a straight line.

2. On the sides AB, AC of a triangle ABC are laid off two equal segments AB', AC'
of variable length. The perpendiculars to AB, AC at B', C' meet in D. Show
that the locus of the point D is a straight line. Find the locus of the projection
of D upon the line B'C'.

3. Find the locus of a point at which two consecutive segments AB, BC of the same
straight line subtend equal angles.

4. The base BC of a variable triangle ABC is fixed, and the sum AB + AC is con-
stant. The line DP drawn through the midpoint D of BC parallel to AB meets
the parallel CP through C to the internal bisector of the angle A, in P. Show
that the locus of P is a circle having D for center.

The following are examples of the use of loci in the solution of
problems.
12. Problem. Draw a circle passing through two given points and
subtending a given angle at a third given point.

ANALYSIS. Let (0) be the required circle passing through the two
given points A, B (Fig. 13). The angle formed by the tangents CT,
CT' from the given point C to (0) is given; hence in the right triangle
OTC we know the acute angle OCT, i.e., we know the shape of this
triangle. Thus the ratio OT:OC is known, therefore also the ratios:

OA :OC = OB:OC.

Consequently we have two loci for the point 0 (two Apollonian
circles), and the point may be found.
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FIG. 13

CONSTRUCTION. On the internal bisector PQ of the given angle P
take an arbitrary point Q and drop the perpendicular QR upon one of
the sides. Divide each of the two given segments AC, BC internally
and externally in the ratio QR:QP in the points E, F and G, H, re-
spectively. A point 0 common to the two circles having EF and GH
for diameters is the center of the required circle.

The proof and the discussion are left to the student.
13. Problem. Through two given points of a circle to draw two parallel
chords whose sum shall have a given length.

ANALYSIS. Let A, B be the two given points of the circle, center 0,
and let AC, BD be the two required chords. In the isosceles trape-
zoid ABDC (Fig. 14) CD = AB, and the length AB is known; hence
CD is tangent to a known circle having 0 for center and touching CD
at its midpoint F (§ 11, locus 9).

If E is the midpoint of AB we have:

2 EF = AC + BD.

Now the point E and the length AC + BD are known; hence we have a
second locus for the point F.

CONSTRUCTION. Draw the circle (0, OE). If 2 s is the given length,
draw the circle (E, s) meeting (0, OE) in F. The tangent to (0, OE)
at F meets the given circle (0) in C and D. The lines AC, BD are
the required chords.

PROOF. The two chords AB, CD are equal, for they are equidistant
from the center 0 of the given circle (0). Hence ABDC is an isosceles
trapezoid, and therefore:

AC + BD = 2 EF.

Now EF = s, by construction; hence AC + BD has the required length.
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DISCUSSION. The circle (E, s) will not cut the circle (0, OE), if s
is greater than 2 OR If s < 2 OE, we obtain two points of intersec-
tion F and F', and therefore two solutions.

The tangent to the circle (0, OE) at F determines the two points
C, D on the circle (0). These two points and the given points A, B

FIG. 14 FIG. 16

determine four lines, namely two sides and the two diagonals of the
isosceles trapezoid. The figure will show which two of these four lines
are those required.

Let G (Fig. 15) be the point of contact of the second tangent issued
from A to the circle (0, OE). If s < EG, the tangent to (O,OE) at F
will cross the chord AB, and in the resulting trapezoid the line AB will
be a diagonal. The line EF is equal to one-half the difference of the
two bases.

Consider the case when the two chords are required to have a given
difference.
14. Problem. On a given circle to find a point such that the lines
joining it to two given points on this circle shall meet a given line in two
points the ratio of whose distances from a given point on this line shall
have a given value.

Let the lines AM, BM joining the given points A, B on the circle
to the required point M meet the given line FPQ in the points P, Q
(Fig. 16). If F is the given fixed point and the parallel QL to MA
through Q meets the line FA in L, we have angle LQB = AMB, and
the latter angle is known, for the chord AB is given.
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On the other hand we have:

FL:FA = FQ:FP,

and the second ratio is given; hence the point L is known. Thus the
known segment LB subtends a given angle at the point Q, which
gives a locus for this point (§ 11, locus 7). The point Q lies at the
intersection of this locus with the given line FPQ. The line BQ meets
the circle in the required point M.

The proof and discussion are left to the reader.

EXERCISES

Construct a triangle, given:

1. a, b, A. 3. a, h m,. 5. a, m b: c.
2. a, c, hb. 4. a, h b: c. 6. a, t b: c.

Construct a parallelogram, given:
7. An altitude and the two diagonals.
8. The two altitudes and an angle.
9. The two altitudes and a diagonal.

10. A side, an angle, and a diagonal.
11. A side, the corresponding altitude, and the angle between the diagonals.

Construct a quadrilateral ABCD, given:
12. The diagonal AC and the angles ABC, ADC, BAC, DAC.
13. The sides AB, BC, the diagonal CA, and the angles ADB, BDC.
14. The sides AB, AD, the angle DAB, and the radius of the inscribed circle.
15. Construct a quadrilateral given three sides and the radius of the circumscribed

circle. Give a discussion.
16. Given three points, to find a fourth point, in the same plane, such that its dis-

tances to the given points may have given ratios.
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17. With a given radius to draw a circle so that it shall touch a given circle and have
its center on a given line.

18. With a given radius to draw a circle so that it shall pass through a given point
and the tangents drawn to this circle from another given point shall be of given
length.

19. In a given circle to inscribe a right triangle so that each leg shall pass through
a given point.

20. Construct a triangle given the base, the opposite angle, and the point in which
the bisector of this angle meets the base.

21. Construct a triangle given the base and the angles which the median to the base
makes with the other two sides.

22. About a given circle to circumscribe a triangle given a side and one of its adja-
cent angles, so that the vertex of this angle shall lie on a given line.

23. Construct a triangle given the base, an adjacent angle, and the angle which the
median issued from the vertex of this angle makes with the side opposite the
vertex of this angle.

D. INDIRECT ELEMENTS

Among the conditions which a figure to be constructed may be
required to satisfy, elements may be given which do not occur directly
in the figure in question. For instance, it may be required that the
sum of two sides of a triangle shall have a given length, or that the dif-
ference of the base angles shall have a given magnitude, etc. In
order to arrive at a method of solution of such a problem, it is neces-
sary to introduce this "indirect element" in the analysis of the problem.
15. Problem. Construct a triangle given the perimeter,, the angle op-
posite the base, and the altitude to the base (2 p, A, he).

A

B D' C F
Fia. 17

Let ABC (Fig. 17) be the required triangle. Produce BC on both
sides and lay off BE = BA, CF = CA. Thus EF = 2 p.

The triangles EAB, FCA are isosceles, hence:

L E= L EAB = J L ABC, L F= L FAC =- L ACB;
hence:

LEAF= B + A + J C = 4(A+B+C)+'A=90°+#A,
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and therefore the angle EAF is known. The altitude AD of the tri-
angle ABC is also the altitude of AEF. Thus in the triangle AEF we
know the base EF = 2 p, the opposite angle EAF = 90° + A, and
the altitude AD = ha; hence this triangle may be constructed. The
vertex A of this triangle also belongs to the required triangle ABC.
Since BA = BE, CA = CF, the vertices B, C are the traces on EF of
the mediators of AE and AF.

The problem may have two solutions symmetrical with respect to
the mediator of EF, or one solution, or none.

Note. In order to construct the required triangle ABC we have
constructed another triangle AEF, as an intermediate step. Use of
an auxiliary triangle is often very helpful.
16. Remark. The angles of the triangle AEF are simply expressed
in terms of the angles of ABC, and one of the altitudes of AEF be-
longs to ABC. These relations afford a simple way of solving the
following problems.

Note. Other problems involving the perimeter of a triangle will be
discussed later (§§ 157-173).

EXERCISES

Construct a triangle, given:
1. 2 p, A, B. 2. 2 p, h., B (or C).

17. Problem. Construct a triangle given the base, the opposite angle,
and the sum of the other two sides (a, A, b + c).

Let ABC (Fig. 18) be the required triangle. Produce BA and
lay off AD = AC. In the -isosceles triangle ACD we have angle

D

FIG. 18
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D = ACD = I BAC. Thus in the triangle BCD we know the base
BC = a, the side BD = b + c, and the angle D = - A; hence this
triangle may be constructed. The vertices B, C belong also to the
required triangle, and the third vertex A is the intersection of BD with
the mediator of the segment CD.

DISCUSSION. The problem is not possible, unless a < (b + c).
Assuming that this condition is satisfied, we have given in the auxiliary
triangle BCD the angle opposite the smaller side; hence we may have
two such triangles, one, or none. From each auxiliary triangle we
obtain one and only one required triangle; hence the problem may have
two, one, or no solutions.

Note. In the auxiliary triangle BCD we have:

LD=4LA,B=B,
and:

LBCD=LBCA+LACD=C+IA
= C+ 2C+ 2A+-I B- 2B

4(A+B+C)-4(B-C)=90°-4-(B-C).
In the triangle BCD the altitude to BD is the altitude h, of ABC.

Instead of producing the side AB, it is in some cases preferable to
produce the side AC.

These relations afford a ready solution of the following problems.
Other problems involving the sum of two sides of a triangle will be

considered later (§§ 157-173).

EXERCISES
Construct a triangle, given.
1. b + c, a, B (or C). 4. b+c,A,B 7. b+c,hz,B-C.
2. b+c,B,h,, 5. b+c,a,h,,(orhh). 8. b+c,hb,B-C
3. b + c, C, a. 6. b + c, a, B - C.

9. b, c, B - C. Hint. Construct b + c. In the triangle BCD we have the
vertices B, D, and a locus for C. Lay off BA = c. The point C lies also on the
circle (A, b).

18. Problem. Construct a triangle given the base, the opposite angle,
and the difference of the other two sides (a, A, b - c).

Let ABC (Fig. 19) be the required triangle. On AC lay off AD=
AB, so that CD = b - c. In the isosceles triangle ADB

LADB = LABD= 4-(180°- A) = 90°- A;
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hence angle BDC = 90° + -1 A. Thus in the triangle BCD we know
the base BC = a, the opposite angle BDC = 90° + -- A, and the side
CD = b - c; hence this triangle may be constructed. The vertices

A

FIG. 19

B, C belong to the required triangle ABC, whose third vertex A lies
on CD produced and on the mediator of BD.

The problem is impossible, unless a > (b - c). When this condi-
tion is satisfied, the given angle in the triangle BCD lies opposite the
larger side, and this triangle may be constructed in one way only. The
proposed problem has thus one solution.

Note. The angle BCD of the auxiliary triangle BCD is equal to the
angle C of the triangle ABC, angle BDC = 90° + j A, and:

LCBD= LABC- LABD = B - (90°- 1A)
= B + A+IC - C-90°
= (A +B+C)+4(B-C) -90°=J(B-C).

Also the altitude to CD is the altitude kb of ABC. These relations
may be used to solve the following problems.

EXERCISES
Construct a triangle, given:
1. b - c, a, C. 3. b - c,hb,C. 5. b - c, A, B.
2. b-c,a,B-C. 4. b - c,hb,B-C. 6. b-c,hb,A.

19. Problem. Construct a triangle given the base, the difference of the
other two sides, and the altitude to one of these sides (a, b - c, he).

Let ABC (Fig. 20) be the required triangle. Produce AB and lay
off AE = AC, so that BE = b - c. In the triangle BCE we have
BC = a, BE = b - c, and the altitude to BE equal to h,; hence this
triangle may be constructed, and from this triangle we readily pass
to the required triangle ABC.
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Note. The angles of BCE are determined in the same way as in
the triangle BCD of the preceding problem (§ 18), and these relations
may be used to solve the following problems.

FIG. 20

Other problems involving the difference of two sides of a triangle
will be considered later (§§ 157-173).

EXERCISES

Construct a triangle, given:

1. b-c,LL,B-C. 2. b-c,1k,A.
3. b, c, B - C. Hint. Either BCD or BCE may be used as auxiliary triangle.

20. Problem. Construct a triangle given the base, the opposite angle,
and the sum of the altitudes to the other two sides (a, A, hb + he).

Let ABC be the required triangle (Fig. 21). Produce the altitude
BE and lay off EG equal to the altitude CF. Through G draw the line
GH parallel to AC meeting BA, produced, in H. Hence:

L BHG = L BAC = A, L BGH = L BEA = 90°.

Thus in the right triangle BGH we know the leg BG = hb + h. and
the acute angle BHG = A ; hence this triangle may be constructed
and the length BH determined.

It is readily shown that BH = b + c. Draw the line AI parallel
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H

FIG. 21

to BG meeting HG in the point I. AIGE is a rectangle and therefore
AI = EG = h,. Now in the right triangles ACF, AHI, we have:

AI = CF = L AHI = LCAF = A;

hence the two triangles are congruent, and AH = AC = b; therefore:

BH = BA + AH = b + c.

Thus, of the required triangle ABC we know now: a, A, b + c, and
the problem is reduced to a known problem (§ 17).

However, the passage from the auxiliary triangle BGH to the
required triangle ABC may be made directly in the figure. The
vertex B of BGH belongs to ABC. In order to find C we observe
that in the isosceles triangle AHC we have:

LAHC=LACH=1A,
and since angle AHG = A, the line HC is the bisector of the angle H,
and this line constitutes a locus for the point C. The circle (B, a) is a
second locus for C. The vertex A is then determined on the side BH of
BGH by the mediator of CH.

If the given angle A is obtuse, the triangle BGH will include not A
but its supplement, and the problem may be solved in the same way.
21. Definition. The right triangle BGH involves the elements:

b -f- c, hb+h,, A;
hence given any two of these elements the third one is determined. A
set of elements of a triangle having this property is sometimes referred
to as a datum.
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EXERCISES

27

Construct a triangle, given:

1. hb + h,,, B, C. 3. kb + b, A.
2. hb + A,, b, c. 4. bb + h,, b + c, a.

5. bb + k, b + c, B - C. Hint. The triangle BGH determines A, and
B + C = 180° - A is thus known, hence the angles B and C may be constructed.

6. hb+k,b-c, A.

22. Problem. Construct a triangle given the base, the opposite angle,
and the difference of the altitudes to the other two sides (a, A, h0 - hb).

Let ABC (Fig. 22) be the required triangle. Draw the altitudes
BE, CF, and lay off FG = BE, so that CG = h, - hb. Draw GH
parallel to AB. In the right triangle CGH we know the leg
CG = he - hb and the angle CHG = A ; hence this triangle may be
constructed, and the length CH is determined.

A

FIG. 22

We now show that CH = b - c. Drop the perpendicular HI from
H upon AB. We have HI = FG = BE, hence the two right triangles
ABE, AHI are congruent, having the angle A in common and
BE = HI; therefore AH = AB, so that:

CH=CA-AH=CA-AB=b-c.
With b - c known, the proposed problem is reduced to a known prob-
lem (§ 18).

However, the required triangle may be obtained directly from the
triangle CHG. The vertex C belongs to the required triangle. From
the isosceles triangle ABH we have angle AHB = 4(180° - A); but:

L AHG = 180° - LGHC = 1800 - A;
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hence BH is the bisector of the angle AHG and thus furnishes a locus
for the vertex B of ABC, the other locus being the circle (C, a). The
vertex A is now obtained as the trace on CH, produced, of the mediator
of BH.

If the given angle A is obtuse, the triangle CGH will include not A,
but its supplement, and the problem may be solved in the same way.

Note. The preceding discussion shows that the elements:

b-c, h, - hb, A

constitute a datum.

EXERCISES

Construct a triangle, given:
1. h,-hb,B,C. 3.

hb, h, - hb, b c.

SUPPLEMENTARY EXERCISES

1. Through a given point to draw a circle tangent to two given parallel lines.
2. Through a given point to draw a line passing through the inaccessible point of

intersection of two given lines.
3. Draw a line of given direction meeting the sides AB, AC of a given triangle

ABC in the points B', C' such that BY = CC'.
4. Through a given point to draw a line so that the sum (or the difference) of its

distances from two given points shall be equal to a given length. Discuss two
cases: when the two given points are to lie on the same side, and on opposite
sides, of the required line.

5. In a given equilateral triangle to inscribe another equilateral triangle, one of

the vertices being given.
6. In a given square to inscribe another square, given one of the vertices.
7. On the side CD of a given parallelogram ABCD to find a point P such that the

angles BPA and BPC shall be equal.
8. Construct a parallelogram so that two given points shall constitute one pair of

its opposite vertices, and the other pair of vertices shall lie on a given circle.
9. Through a point of intersection of two given circles to draw a line so that the

two chords intercepted on it by the two circles shall (i) be equal; (ii) have a
given ratio.

10. Through a point of intersection of two circles to draw a line so that the sum of
the two chords intercepted on this line by the two circles shall be equal to a
given length.

11. Through a point of intersection of two circles to draw a line so that the two
chords determined on it by the two circles shall subtend equal angles at the
respective centers.
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12. Given an angle and a point marked on one side, find a second point on this side
which shall be equidistant from the first point and from the other side of the
angle.

13. With a given radius to describe a circle having its center on one side of a given
angle and intercepting a chord of given length on the other side of this angle.

14. With a given point as center to describe a circle which shall intercept on two
given parallel lines two chords whose sum shall be equal to a given length.

15. Draw a line parallel to the base BC of a given triangle ABC and meeting the
sides AB, AC in the points B', C' so that the trapezoid BB'C'C shall have a given
perimeter.

16. Construct a triangle so that its sides shall pass through three given noncollinear
points and shall be divided by these points internally in given ratios.

REVIEW EXERCISES

CONSTRUCTIONS

1. In a given circle to draw a diameter such that it shall subtend a given angle at a
given point.

2. Draw a line on which two given circles shall intercept chords of given lengths.
3. Place two given circles so that their common internal (or external) tangents

shall form an angle of given magnitude.
4. Construct a right triangle given the altitude to the hypotenuse, two points on

the hypotenuse, and a point on each of the two legs.
5. Through a given point of the altitude, extended, of a right triangle to draw a

secant so that the segment intercepted on that secant by the sides of the right
angle shall have its midpoint on the hypotenuse.

6. Through two given points, collinear with the center of a given circle, to draw
two lines so that they shall intersect on the circle, and the chords which the
circle intercepts on these lines shall be equal,

7. Through a given point to draw a line so that the segment intercepted on it by
two given parallel lines shall subtend a given angle at another given point.

8. Construct a triangle given the base, an adjacent angle, and the trace, on the
base, of the circumdia.meter (i.e., the diameter of the circumscribed circle)
passing through the opposite vertex.

9. Construct a triangle given, in position, the inscribed circle, the midpoint of the
base, and a point on the external bisector of a base angle.

10. Construct a triangle ABC given, in position, a line u on which the base BC is
to lie, a point D of the circumcircle, a point E of the side AB, the circumradius
R, and the length a of the base BC.

11. In a given triangle to inscribe an equilateral triangle of given area.
12. With a given radius to draw a circle so that it shall pass through a given point

and intercept on a given line a chord of given length.
13. Draw a circle tangent to two concentric circles and passing through a given

point.
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14. Construct a right triangle given the altitude to the hypotenuse and the distance
of the vertex of the right angle from the trace on a leg of the internal bisector
of the opposite acute angle.

15. Construct a rectangle so that one of its vertices shall coincide with a vertex of
a given triangle and the remaining three vertices shall lie on the three circles
having for diameters the sides of the triangle.

16. Construct a triangle given a median and the circumradii of the two triangles
into which this median divides the required triangle.

17. Construct a triangle ABC given a - b, kb + Is,, A.
18. On a given line AB to find a point P such that if PT, PT' are the tangents from

P to a given circle, we shall have angle APT = BPT'.
19. On the sides AB, AC of the triangle ABC to mark two points P, Q so that the

line PQ shall have a given direction and that PQ: (BP + CQ) = Is, where Is is
a given number (ratio).

20. Draw a line perpendicular to the base of a given triangle dividing the area of
the triangle in the given ratio p: q.

21. Through a given point to draw a line bisecting the area of a given triangle.
22. Draw a line having a given direction so that the two segments intercepted on it

by a given circle and by the sides of a given angle shall have a given ratio.
23. Through a vertex of a triangle to draw a line so that the product of its distances

from the other two vertices shall have a given value, P.
24. Through two given points A, B to draw two lines AP, BQ meeting a given line

PQ in the points P, Q so that AP = BQ, and so that the lines AP, BQ form a
given angle.

25. Through a given point R to draw a line cutting a given line in D and a given
circle in E, F so that RD = EF.

26. With a given point as center to draw a circle so that two points determined by
it on two given concentric circles shall be collinear with the center of these
circles.

27. Inscribe a square in a given quadrilateral.

PROPOSITIONS

28. The circle through the vertices A, B, C of a parallelogram ABCD meets DA,
DC in the points A', C'. Prove that A'D:A'C' = A'C:A'B.

29. Of the three lines joining the vertices of an equilateral triangle to a point on its
circumcircle, one is equal to the sum of the other two.

30. Three parallel lines drawn through the vertices of a triangle ABC meet the
respectively opposite sides in the points X, Y, Z. Show that:

area X YZ : area ABC = 2:1.

31. If the distance between two points is equal to the sum (or the difference) of the
tangents from these points to a given circle, show that the line joining the two
points is tangent to the circle.

32. Two parallel lines AE, BD through the vertices A, B of the triangle ABC meet
a line through the vertex C in the points E, D. If the parallel through E to BC
meets AB in F, show that DF is parallel to AC.
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33. A variable chord AB of a given circle is parallel to a fixed diameter passing
through a given point P. Show that the sum of the squares of the distances of
P from the ends of AB is constant and equal to twice the square of the distance
of P from the midpoint of the arc AB.

34. The points A', B', C' divide the sides BC, CA, A B of the triangle ABC internally
in the same ratio, k. Show that the three triangles AB'C', BC'A', CA'B' are
equivalent, and find the ratio of the areas ABC, A'B'C'.

35. The sides BA, CD of the quadrilateral ABCD meet in 0, and the sides DA, CB
meet in 0'. Along OA, OC, O'A, O'C are measured off, respectively, OR, OF,
O'E', O'F' equal to AB, DC, AD, BC. Prove that EF is parallel to E'F'.

36. The point P of a circle, center 0, is projected into N upon a diameter AOB.
Along PO lay off PQ = 2 AN. If AQ meets the circle again in R, prove that
angle AOR = 3 AOP.

37. If P is any point on a semicircle, diameter AB, and BC, CD are two equal arcs,
then if E = (CA, PB), F = (AD, PC), prove that AD is perpendicular to EF.

38. In the triangle ODE the side OD is smaller than OE and 0 is a nght angle. A,
B are two points on the hypotenuse DE such that angle AOD = BOD = 45°.
Show that the line MO joining 0 to the midpoint M of DE is tangent to the
circle OAB.

39. From the point S the two tangents SA, SB and the secant SPQ are drawn to the
same circle. Prove that AP: AQ = BP: BQ

40. On the radius OA, produced, take any point P and draw a tangent PT; produce
OP to Q, making PQ = PT, and draw a tangent QV; if VR be drawn per-
pendicular to OA, meeting OA at R, prove that PR = PQ = PT.

41, The parallel to the side AC through the vertex B of the triangle ABC meets
the tangent to the circumcircle (0) of ABC at C in B', and the parallel through
C to AB meets the tangent to (0) at B in C'. Prove that BC' =

42. Two variable transversals PQ, P'Q' determine on two fixed lines OPP', OQQ'
two segments PP', QQ' of fixed lengths. If L, M are two points on PQ, P'Q'
such that PL: LQ = P'M: MQ' = a constant ratio, prove that LM is fixed in
magnitude and direction.

43. If Q, R are the projections of a point M of the internal bisector AM of the angle
A of the triangle ABC upon the sides AC, AB, show that the perpendicular MP
from M upon BC meets QR in the point N on the median AA' of ABC

44. A circle touching AB at B and passing through the incenter 1 (i.e., the center I
of the inscribed circle) of the triangle ABC meets AC in H, K. Prove that IC
bisects the angle NIK.

45. AB, CD are two chords of the same circle, and the lines joining A, B to the mid-
point of CD make equal angles with CD. Show that the lines joining C, D to
the midpoint of AB make equal angles with AB.

46. Three pairs of circles (B), (C); (C), (A); (A), (B) touch each other in D, E, F.
The lines DE, DF meet the circle (A) again in the points G, H. Show that GH
passes through the center of (A) and is parallel to the line of centers of the
circles (B) and (C).

47. The mediators of the sides AC, AB of the triangle ABC meet the sides AB, AC
in P, Q. Prove that the points B, C, P; Q lie on a circle which passes through
the circumcenter (i e., the center of the circumscribed circle) of ABC.
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48. MNP, M'N'P' are two tangents to the same circle PQP', and AM, BN, AM',
BN' are perpendiculars to them respectively from the two given points A, B.
If MP:PN = M'P':P'N', prove that the two tangents are parallel.

49. ABC is a triangle inscribed in a circle; DE is the diameter bisecting BC at G;
from E a perpendicular EK is drawn to one of the sides, and the perpendicular
from the vertex A on DE meets DE in H. Show that EK touches the circle
GHK.

50. If the internal bisector of an angle of a triangle is equal to one of the including
sides, show that the projection of the other side upon this bisector is equal to
half the sum of the sides considered.

51. From two points, one on each of two opposite sides of a parallelogram, lines
are drawn to the opposite vertices. Prove that the straight line through the
points of intersection of these lines bisects the area of the parallelogram.

52. The point B being the midpoint of the segment AC, the circle (A, AB) is drawn,
and upon an arbitrary tangent to this circle the perpendicular CD is dropped
from the point C. Show that angle ABD = 3 BDC.

53. Show that the line of centers of the two circles inscribed in the two right triangles
into which a given right triangle is divided by the altitude to the hypotenuse is
equal to the distance from the incenter of the given triangle to the vertex of its
right angle.

54. ABC is an equilateral triangle, D a point on BC such that BD is one-third of BC,
and E is a point on AB equidistant from A and D. Show that CE = EB + BD.

55. If a line AB is bisected by C and divided by D unequally internally or externally,
prove that AD2 + DB2 = 2(AC2 + CD2).

56. Let M be the midpoint of chord AB of a circle, center 0; on OM as diameter
draw another circle, and at any point T of this circle draw a tangent to it meet-
ing the outer circle in E. Prove that AE2 + BE2 = 4E72.

57. If M, N, P, Q are the midpoints of the sides AB, BC, CD, DA of a square ABCD,
prove that the intersections of the lines AN, BP, CQ, DM determine a square of
area one-fifth that of the given square ABCD.

58. If M, N are points on the sides AC, AB of a triangle ABC and the lines BM, CN
intersect on the altitude AD, show that AD is the bisector of the angle MDN.

LOCI

59. A, B, C, D are fixed points on a circle (0). The lines joining C, D to a variable
point P meet (0) again in Q, R. Find the locus of the second point of inter-
section S of the two circles PQB, PRA.

60. Find the locus of a point at which two given circles subtend equal angles.
61. Given two points A, B, collinear with the center 0 of a given circle, and a vari-

able diameter PQ of this circle, find the locus of the second point of intersection
of the two circles APO, BQO.

62. On the sides OA, OB of a given angle 0 two variable points A', B' are marked
so that the ratio AA': BB' is constant, and on the segment A'B' the point I is
marked so that the ratio A'I: B'I is constant. Prove that the locus of the point
I is a straight line.
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63. A variable circle, passing through the vertex of a given angle, meets the sides
of this angle in the points A, B. Show that the locus of the ends of the diameter
parallel to the chord AB consists of two straight lines.

64. AA', BB' are two rectangular diameters of a given circle (0). A variable
secant through B meets (0) in M and AA' in N. Show that the point of inter-
section P of the tangent to (0) at M with the perpendicular to AA' at N de-
scribes a straight line.

65. Through the center 0 and the fixed point A of a given circle (0) a variable circle
(C) is drawn meeting (0) again in D. Find the locus of the point of intersection
M of the tangents to the circle (C) at the points 0 and D. Show that the line
MC is tangent to a fixed circle concentric with (0).

66. A variable circle touches the sides OB, OD of a fixed angle in B and D; E is the
point of contact of this circle with the second tangent to it from a fixed point A
of the line OB. Show that the line DE passes through a fixed point.

67. A variable line PAB through the fixed point P meets the sides OA, OB of a
given angle 0 in the points A, B. On the lines OA, OB the points A', B' are
constructed so that the ratios OA': OA and OB':OB are constant. Prove that
the line A'B' passes through a fired point.



II

SIMILITUDE AND HOMOTHECY

A. SIMILITUDE

23. Method of Similitude. By disregarding one of the conditions of
a problem it is sometimes possible to construct a figure similar to the
one required. From the figure thus constructed and the omitted con-
dition it is usually possible to derive an element which enables us to
solve the proposed problem. The following examples illustrate this
method.
24. Problem. Construct a square given the sum of its side and its
diagonal.

Since all squares are similar, we begin by constructing a square
arbitrarily. Let a', d' denote its side and its diagonal, respectively,
and let a, d be the corresponding elements of the required square.
From the similitude of the two figures we have:

a: a' = d: d', or (a + d) : (a' + d') = a: a'.

In the last proportion we know three terms, for a + d is given; hence
the segment a may be constructed as a fourth proportional, and the
problem is reduced to constructing a square given its side.
25. Problem. Construct a triangle similar to a given triangle and equiva-
lent to a given square.

Neglecting the area, construct a triangle A'B'C' similar to the re-
quired triangle ABC. If a' = B'C', h' is the altitude to this side, and
m' the side of the square equivalent to the area of A'B'C', we have
m'2 = a' -4 h'; hence m' may be constructed as a third proportional.

The side a = BC may now be determined from the proportion

a: a' = m:m',
34
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where m is the side of the given square, and the required triangle is
readily constructed.

On the side B'C' lay off B'C = a. The parallel through C to A'C'
meets A'B' in the third vertex of the required triangle AB'C.

The problem has one and only one solution.
26. Problem. Construct a triangle given the two lateral sides and the
ratio of the base to its altitude (b, c, a:ha = p:q).

A

FIG. 23

Let ABC be the required triangle (Fig. 23). On the altitude AD
lay off AE = q and through E draw the parallel FEG to BC. From
the similar triangles AFG, ABC we have:

AF:AG = AB:AC = c:b, FG:AE = BC:AD = p:q;

hence FG = p.
Thus in the triangle AFG, similar to the required triangle, we know

the base FG = p, the altitude AE = q, and the ratio of the sides
AF: AG = c: b; hence this triangle may be constructed. Having con-
structed AFG lay off on AF a segment AB = c. The parallel to PG
through B will meet AG, produced, in the third vertex C of the required
triangle ABC.

The problem may have two, one, or no solutions.
27. Problem. Construct a trapezoid given the nonparallel sides, the
angle between them, and the ratio of the two parallel sides.

Let ABCD (Fig. 24) be the required trapezoid, and E the point
of intersection of the nonparallel sides AD, BC. The triangles ABE,
DCE are similar; hence:

EC:EB = ED:EA = CD:BA = p:q (the given ratio),
or:

or:

EC: (EB - EC) = ED: (EA - ED) = p: (q - p),

EC:CB=ED:DA= p:(q- p).
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Thus the segments EC, ED may be constructed, and therefore also
the triangle DCE, of which we have two sides and the included angle.

E

FIG. 24

Having constructed this triangle, produce ED and lay off the given
length DA. The parallel to CD through A determines on EC, pro-
duced, the fourth vertex B of the required trapezoid ABCD.
28. Problem. About a given circle to circumscribe an isosceles triangle
in which the ratio of the lateral side to the base shall have' a given value.

All isosceles triangles in which the value of the ratio of the lateral
side to the base is the same are similar, for they are divided by the
altitude to the base into similar right triangles.

On the base B'C', of arbitrary length, construct the isosceles tri-
angle A'B'C' so that

A'B' : B'C' = p : q (the given ratio).

Let r' and h' be the radius of the inscribed circle and the altitude to
the base of this triangle, and let r, h be the analogous elements of the
required triangle ABC. From the similitude of the two triangles we
have:

h:h' = r: r,
and in this proportion the last three terms are known; hence It may
be constructed.

At an arbitrary point D of the given circle draw the tangent t, and
on the line joining D to the center lay off DA = It. The tangents from
A to the circle and the tangent t form the required triangle ABC.
29. Problem. Divide a given segment, m, into three parts a, b, c, such
that a : b = p : q, and b : c = r : s, where p, q, r, s are given segments.

If we determine t from the proportion:

we have:
q:1 = r:s,

a:b:c = p:q:t.
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On one side of an arbitrary angle A lay off AM = m, and on the
other side lay off AP = p, PQ = q, QT = t. The parallels through
P, Q to the line MT meet AM in the points X, Y such that AX = a,
XY=b,YM=c.
30. Definition. Given two triangles ABC, A'B'C', angle A = A',
B = B', C = C', if the rotation determined by the points A, B, C,
taken in that order, is counterclockwise, and the rotation A', B', C' is
clockwise, or vice versa, the two triangles are said to be inversely
similar.

If the senses of rotation ABC, A'B'C' are the same, the triangles
are directly similar.

EXERCISES

1. If in two triangles two pairs of sides are proportional, and the angle opposite the
longer of the two sides considered in one triangle is equal to the corresponding
angle in the other triangle, show that the two triangles are similar. Consider
the case when the given angle lies opposite the shorter side.

2. If the corresponding sides of two triangles are perpendicular, show that the two
triangles are similar.

Construct a triangle, given :

3. A, B, 2 p. 6. a: b: c, R. 9. B - C, a: (b + c), mo + mb,
4. A, B, b + c. 7. A, a: c, ho. 10. a: b, b: c, 1a + tb - t4.
5. A,B,h,,-hb. S. A,a:b,2p.

11. Construct a triangle given an angle, the bisector of this angle, and the ratio of
the segments into which this bisector divides the opposite side.

12. Construct a right triangle given the perimeter and the ratio of the squares of
the two legs.

13. Construct a triangle given the area and the angles which a median makes with
the two including sides.

14. Construct a parallelogram given the ratios of one side to the two diagonals, and
the area.

15. Given a circle and two radii, produced, draw between them a tangent to the
circle which shall be divided by the point of contact in a given ratio.

16. In a given circle to inscribe an isosceles triangle given the sum of its base and
altitude.

17. Construct a triangle given a, A, mb + nc = s, where m and n are two given
constants.

18. If in two triangles two angles are equal and two other angles are supplementary,
show that the sides opposite the equal angles are proportional to the sides
opposite the supplementary angles.
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B. HOMOTHECY

31. Definition. If the corresponding sides of two similar polygons
are parallel, the two polygons are said to be similarly placed, or homo-
thetic.
32. Theorem. The lines joining corresponding vertices of two homo-
thetic polygons are concurrent (i.e., meet in a point).

B'
FIG. 25

Let ABCD. .. , A'B'C'D' . . . be two homothetic polygons, and
S = (A A', BB') (Fig. 25). In order to prove the proposition it is
necessary to show that a line joining the next pair C, C' of correspond-
ing vertices will also pass through S. If the line CC' does not pass
through S, let S' be the point where it meets BB'. From the two pairs
of similar triangles SAB and SA'B', S'BC and S'B'C' we have:

SB':SB = A'B':AB, S'B':S'B = B'C':BC.

But, by assumption:

B'C':BC = A'B':AB;
hence:

SB':SB = S'B':S'B, or SB': (SB - SB') = S'B': (S'B - S'B'),

or:
SB' : BB' = S'B' : BB';

therefore S' coincides with S.
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33. Definitions. The point S (§ 32) is said to be the center of simili-
tude, or the homothetic center of the two polygons.

The constant ratio

is called the ratio of similitude, or the homothetic ratio of the two figures.
This ratio is given either as a number or as the ratio of two given seg-
ments, say p, q.

The relation between the two figures is called a homothecy.
34. Problem. Given a polygon ABCD ... to construct a second poly-
gon A'B'C'D' ... homothetic to the first, so that their homothetic ratio
shall have a given value, k, and a given point S shall be their homothetic
center.

On the lines SA, SB, SC.... (Fig. 26) joining the vertices A, B, C,
... of the given polygon to the given homothetic center S construct
the points A', B', C', . . . so that:

SA':SA=SB':SB=SC':SC= =k.
The polygon A'B'C' ... thus constructed satisfies the conditions of
the problem.

Indeed, the triangles SAB, SA'B' are similar; hence A'B' is
parallel to AB and:

A'B':AB = SA':SA = k.

Likewise for the other pairs of the sides of the two polygons.
Corresponding pairs of sides of the two polygons being parallel,

S

corresponding angles are equal. Thus the two polygons are similar,
they are similarly placed, their ratio of similitude has the given value,
k, and the lines joining corresponding vertices obviously meet in S.
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35. Definitions. The points A and A', B and B', ... (§ 34) are said
to be corresponding points, or homologous points, or homothetic points in
the homothecy.

The value of the homothetic ratio, k, may be either positive or nega-
tive. In the first case two homologous points lie on the same side of
the homothetic center, and the two polygons are directly homothetic;
in the second case, two homologous points lie on opposite sides of the
homothetic center, and the two polygons are inversely homothetic.

Of particular interest is the case when k = -1. The homothetic
center S is then the midpoint of the segment determined by any two
corresponding points. The polygons are then said to be symmetric
with respect to the point S, and S is said to be their center of symmetry.

The homothecy having for center S and for ratio k will, for the sake
of brevity, be denoted by (S, k).
36. Generalizations. It is clear that given the homothetic center S
and the homothetic ratio k, the points A', B', C, . . . may be con-
structed, whether the given points A, B, C, . . . are the vertices of a
convex polygon or not. We may therefore extend the concept of
homothetic figures in the following way. Given a figure (F) consist-
ing of any number of points A, B, C.... distributed in the plane in
any manner, we choose a fixed point S and a fixed ratio k, and con-
struct the points A', B', C', . . . on the lines SA, SB, SC, ... so that:

SA':SA = SB':SB = ... = k.

The figure (F) consisting of the newly constructed points A', B', C',
... is the homothetic of the figure (F), by definition, with S and k as
the homothetic center and homothetic ratio, respectively.

The extension of the concept of homothetic figures may be carried
further. It is by no means essential to comply with the restriction
that the given figure (F) is to consist of isolated points, as we have
done so far. We may imagine that a point M of the figure (F) moves
along a continuous curve (C). If we construct the homothetic points
M' for the positions of M, we obtain a curve (C) belonging to the
figure (F'), and this curve is said to be the homothetic of the curve (C).

In particular we may suppose that the point M describes a straight
line, or a circle.
37. Theorem. Given two homothetic figures, if a point of one figure de-
scribes a straight line, the homologous point of the second figure also de-
scribes a straight line, and the two lines are parallel.
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Let the point M describe the line u of the figure (F). Let P, Q, R
be three positions of M and let P', Q', R' be the corresponding points
in the homothetic figure (F'). From the pairs of similar triangles SPQ
and SP'Q', SQR and SQ'R' it follows that PQ and P'Q', QR and Q'R'
are pairs of parallel lines. Now P, Q, R are collinear and the two lines
P'Q', Q'R' have the point Q' in common; hence the three points P', Q',
R' are collinear. But the two lines PQ, P'Q' are determined by the
pairs of points P and Q, P' and Q'; the above argument therefore shows
that the corresponding point R' of any point R of the line u lies on the
line P'Q', which proves the proposition.
38. Remark I. The proposition is often stated more succinctly thus:
The homothetic of a straight line is a straight line parallel to it.
39. Remark II. If the two figures (F), (F') are directly homothetic,
the senses FQR, P'Q'R' on the two parallel lines are the same. If the
figures (F), (F') are inversely homothetic, the two senses PQR, P'Q'R'
are opposite.
40. COROLLARY. Corresponding angles in two homothetic figures are
equal, for the two pairs of corresponding sides of the two angles are par-
allel and are directed either both in the same sense or both in the op-
posite sense.
41. Problem. Through a given point to draw a line so that the segment
intercepted on it by the sides of a given angle shall be divided by the given
point in a given ratio.

On the line AC (Fig. 27) joining the given point A to an arbitrary
point C on the side BC of the given angle CBE lay off the segment AD

so that AC:AD shall be equal to the given ratio p:q. Thus the
points C, D correspond to each other in the homothecy (A, p: q);
therefore when the point C describes the given line BC, the point D
will describe a line parallel to BC. If E is the point where this
parallel meets the other side of the given angle, AE is the required
line.
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42. Problem. From a variable point D, within the triangle ABC, the
perpendiculars DM, DN are dropped upon AB, AC. If CN-AC =
BM A B, find the locus of the point D.

The points A, M, D, N (Fig. 28) lie on the circle (0) having the
midpoint 0 of AD for center. On the other hand the given equality
shows that the squares of the tangents from the points B, C to (0) are

FIG. 28

equal; hence CO = BO (§ 11, locus 2). Thus the locus of 0 is the
mediator m of BC. The locus of D is therefore the straight line
which corresponds to the line m in the homothecy (A, 2).
43. Problem. To draw a secant meeting the sides AB, AC of the given
triangle ABC in the points D, E so that BD = DE = EC.

Let ABCDE (Fig. 29) be the required figure. If the parallel to
DE through A meets BE in F, and the parallel to AC through F meets

A

FIG. 29

BC in G, the quadrilaterals BDEC, BAFG are clearly homothetic, with B
as homothetic center; hence BA = AF = FG. Now the quadrilateral
BAFG may be constructed in the following way. On CA lay off
CL = AB, and if the parallel to BC through L meets the circle (A, AB)
in F, the parallel to AC through F meets BC in G, the fourth required
vertex.
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The parallel through the point E = (AC, BF) to the line AF is the
required secant.
44. Problem. Construct a triangle given the vertical angle and the sums
of the base with each of the other two sides (A, a + b, a + c).

Let ABC be the required triangle (Fig. 30). Produce AB and
AC. Lay off BD = BC, CE = BC; hence AD = a +- c, AE =

A

FIG. 30

a+ b, and the triangle DAE may be constructed, since we know
two sides and the included angle. In order to pass from this
triangle to the required triangle ABC it is necessary to draw a
secant BC so that DB = BC = CE, i.e., the problem is reduced
to the preceding one (§ 43).

EXERCISES

1, Show that a homothecy is determined, given: (a) the homothetic center and a
pair of corresponding points; (b) the homothetic ratio and a pair of correspond-
ing points; (c) two pairs of corresponding points.

2. What figure is the homothetic of a parallelogram? Of a rectangle? Of a square?
3. A, A' and B, B' are two pairs of homologous points in two homothetic figures

(F), (F'), and M is a point of the figure (F). The parallels through A', B'
to the lines AM, BM, respectively, intersect in M'. Prove that M, M' are two
corresponding points in the two figures (F), (F').

4. If two triangles are homothetic, show that their circumcenters, etc., are homolo-
gous points, and their altitudes, medians, etc., are homologous lines in the two
homothetic figures.

5. Through a given point to draw a line passing through the inaccessible point of
intersection of two given lines.

6. Construct a triangle given A, a - b, a - c.
7. Construct a triangle given A, a + b, a - c.
8. Draw a line parallel to the base of a given trapezoid so that the segment inter-

cepted on it by the nonparallel sides of the trapezoid shall be trisected by the
diagonals.
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9. In a given circle to draw a chord which shall be trisected by two radii given in
position.

10. Construct a triangle given a median and the two angles which this median
makes with the including sides.

11. Through a given point to draw a line so that the two segments determined on it
by three given concurrent lines shall have a given ratio.

12. Given three concurrent lines and a fourth line, to draw a secant so that the three
segments determined on it by the four lines shall have given ratios.

45. Problem. In a given triangle to inscribe another triangle whose
sides shall be parallel to the sides of a (second) given triangle.

Let DEF (Fig. 31) be the required triangle inscribed in the given
triangle ABC. Draw arbitrarily a line E'F' parallel to EF meeting
AC, AB in E', F, and let the parallels through E', F to ED, FD, re-
spectively, meet in Y. The triangles DEF, D'E'F' are homothetic

A

and the point A = (EE', FF) is their homothetic center; hence the
points D, D' are collinear with A. Now the triangle D'E'F' is readily
constructed, and the line AD' meets the side BC in the vertex D of
the required triangle; the construction is easily completed.

The problem has one and only one solution.
46. Problem. In a given triangle to inscribe a parallelogram having a
given angle and having its adjacent sides in a given ratio.

Let DEFG (Fig. 32) be the required parallelogram inscribed in the
given triangle ABC. Draw an arbitrary parallel D'E' to DE and on
the parallel D'G' to DG lay off D'G' so that:

D'E' : D'G' = DE : DG = k = the given ratio.

Through E', G' draw parallels to EF, GF, respectively.
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The parallelograms DEFG, D'E'F'G' are homothetic, and the point
A = (DD', EE') is their homothetic center; hence the pairs of points
F and F', G and G' are collinear with the point A. Now the parallelo-

A

F'
FIG. 32

gram D'E'F'G' is readily constructed, and the lines AF', AG' meet BC
in the two vertices F, G of the required parallelogram DEFG, which
is easily completed.

For convenience the base BC of ABC may be taken for the side
D'E' of D'E'F'G'.

EXERCISES

1. In a given triangle to inscribe a triangle whose sides shall be parallel to the
internal bisectors of the given triangle. Two solutions.

2. In a given triangle to inscribe a triangle whose sides shall be perpendicular to
the sides of the given triangle. Two solutions.

3. In a given triangle to inscribe a square.
4. In a given triangle to inscribe a rectangle similar to a given rectangle.
5. In a given triangle to inscribe a parallelogram given the ratio of its sides and the

angle between the diagonals.
6. Given a triangle ABC, construct a square so that two vertices shall lie on BA

and CA, both produced, and the other two vertices on the side BC.
7. In a given semicircle to inscribe a rectangle similar to a given rectangle.
8. In a given circular sector to inscribe a square. Two cases: (i) one vertex or

(ii) two vertices lie on the circumference.
9. Construct a square so that two vertices shall he on a given line and the other

two on a given circle.
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10. Draw a parallel to the base of a given triangle so that the segment intercepted on
it by the other two sides shall subtend a given angle at a given point of the base.

11. If m is the side of the square inscribed in the triangle ABC so that two vertices
lie on the side BC = a, and his the altitude upon BC, show that m(a + h) = ah.

47. Theorem. Given two homothetic figures, if a point of the first figure
describes a circle, the corresponding point of the second figure also de-
scribes a circle.

Consider the homothecy (S, k). Let 0 (Fig. 33) be the center and
A a point on the circle belonging to the first figure, and let 0', A' be

FIG. 33

the homothetic points of the second figure. It follows from the con-
struction that the two triangles SOA, SO'A' are similar; hence:

O'A':OA = SA':SA = k; hence O'A' =
Thus the length O'A' is constant, i.e., as the point A describes the
circle of the first figure, its corresponding point A' moves so as to
remain at a fixed distance k -OA from the fixed point 0'; hence A'
describes a circle having 0' for center and k - OA for radius.

The proposition is often stated more succinctly thus: The homothetic
of a circle is a circle.

Note. It should be carefully observed that (a) the centers 0, 0' of
the two homothetic circles are corresponding points in the two homo-
thetic figures, and that (b) the ratio of the radii of the two circles is
equal to the homothetic ratio.

If one of the circles passes through the homothetic center, the other
circle will also pass through that center, and the two circles will be
tangent at that point.
48. Problem. If PQ is a variable diameter of a given circle, and A, B
two fixed points collinear with the center 0 of the circle, find the locus of
the point M = (AP, BQ).
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If B' (Fig. 34) is the symmetric of B with respect to 0, the two tri-
angles OQB, OPB' are congruent, and from the equality of their angles
it follows that the lines BM, PB' are parallel; hence:

AM:AP = AB:AB'.

Now the latter ratio is known; hence the two variable points P, M
are collinear with the fixed point A and the ratio of their distances from
A is constant, or, in other words, the points P, M correspond to each
other in the homothecy (A, A B': A B), and since P describes the given
circle, the locus of M is a circle of known center and known radius (§ 47).

D

FIG. 34 FIG. 35

49. Problem. Construct a triangle given the base, the opposite angle,
and the ratio of the sum of the other two sides to their difference [a, A,
(b + c) : (b - c) = p: q].

Let ABC (Fig. 35) be the required triangle. Lay off AE = AD =
AC. We have (§§ 17, 18):

LBDC = 2 A, LBEC = 90° - Z A;

hence we know a geometric locus (§ 11, locus 7) for each of the points
E, D. Now the two variable points E, D are collinear with the fixed
point B and the ratio BD: DE is given; hence the two points corre-
spond to each other in the homothecy (B, - p: q), i.e., from the known
locus of E we may derive a locus for D, and this locus together with
the locus for D that we had before determines the position of D. The
mediator of DC meets DBE in the third vertex of the required triangle
ABC.

As an exercise, draw a complete figure for this problem.
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50. Problem. Through a point of intersection of two circles to draw a
line so that the chords intercepted on it by the circles shall have a given
ratio.

Let A (Fig. 36) be a point common to the two given circles (E), (F),
and M any point on (E). On the line AM construct the point M' so

FIG. 36

that AM': AM =-k, where k is the given ratio. As the point M
describes the circle (E), the point M' will describe the circle (E') cor-
responding to (E) in the homothecy (A, -k). If B is the second
point of intersection of the circles (E'), (F), the line AB is the required
secant.

The two circles (E'), (F) have the point A in common and cannot
be tangent to each other (§ 47); hence the point B may always be
found.

If the sign of the given ratio k is not specified, the point M' may
be constructed so that M and M' lie either on the same side or on
opposite sides of the point A, and the problem will have two solutions.
Furthermore, if the problem does not specify which of the two given
circles is to be considered first in forming the given ratio k, the problem
will have four solutions.

As an exercise, draw a complete figure for this problem, with all the
circles involved.
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EXERCISES

1. Through a given point on a circle to draw a chord so that it shall be bisected by
a given chord.

Z. Through a given point to draw a secant so that the segment intercepted on it
by a given line and a given circle shall be divided by the given point in a given
ratio.

3. Through a given point to draw a secant so that the ratio of the distances of the
given point from the points of intersection of the secant with a given circle shall
have a given value.

4. On two given circles to find two points collinear with, and equidistant from, a
given point.

5. Construct a triangle given two sides and the bisector of the included angle
(b, c, lo)

6. Draw a line on which two concentric circles shall determine two chords having
a given ratio.

7. Given three concentric circles to draw a secant so that the segment between the
first and the second circles shall be equal to the segment between the second
and the third circles.

8. A variable point P moves on a fixed circle, center C, and A is a fixed point.
Find the locus of the point of intersection of the line AP with the internal
bisector of the angle ACP.

9. A variable triangle has a fixed base and a fixed circumcircle (i.e., circumscribed
circle). Find the locus of the midpoints of the lateral sides, and the locus of the
midpoint of the segment joining the midpoints of the lateral sides.

10. From the given points B, C the perpendiculars BB', CC' are dropped upon a
variable line AB'C' passing through a fixed point A collinear with B and C.
Find the locus of the point M s (BC', B'C).

11. On the base BC of a given triangle ABC find a point P such that AP: BP PC
shall have a given value.

51. Theorem. If one vertex of a variable triangle is fixed, a second vertex
describes a given straight line, and the triangle remains similar to a given
triangle, then the third vertex describes a straight line.

Let A (Fig. 37) be the fixed vertex, ABC the position of the
variable triangle when the base BC falls on the given line p, and
AB'C' any other position of the variable triangle. The segment AB'
subtends equal angles at the points C and C; hence the quadri.
lateral AB'CC' is cyclic (§ 252), and angle ACC' = AB'C'. Thus:

L BCC' = BCA + ACC = BCA + AB'C.

Now the last two angles are given; hence the line CC' makes a fixed
angle with the given line p. Moreover, C is a fixed point; hence CC'
is a fixed line, which proves the proposition.
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52. Remarks. It should be observed that the point C is determined
on p by the line through A which makes with p an angle equal to the
given angle C, and that the line CC' makes with p an angle equal to
the given angle A.

FIG. 37

The locus of the third vertex C was obtained by taking the given
angles of the triangle in a certain order, i.e., one of the given angles
was placed at the fixed vertex A, and a second at the vertex B describ-
ing the given line p. If the conditions of the problem do not assign
any specified positions to these angles, the distribution of the angles
may be made in six different ways.

Furthermore, after the angles for the vertices A and B have been
chosen, the point C on the line p may be chosen on either side of the
line AB. Thus the complete locus of the point C consists of twelve
lines. They are parallel in pairs.
53. Theorem. If one vertex of a variable triangle is fixed, a second ver-
tex describes a given circle, and the triangle remains similar to a given
triangle, then the third vertex describes a circle.

Let ABC (Fig. 38) be one position of the variable triangle, where A
is the fixed vertex and B lies on the given circle, center 0. On AC
lay off AB' = AB and on AB' construct a triangle AO'B' congruent to
AOB so that the two triangles shall be similarly situated, i.e., so that
it shall be possible to bring the triangle AOB into coincidence with
AO'B' by rotating AOB about the point A.

Since angle O'AB' = OAB, by construction, we have angle O'AO =
B'AB. Now the last angle is given; hence AO' makes with the fixed
line AO a fixed angle; the direction of AO' is therefore fixed. More-
over, AO' is equal to the given length A0; hence the point 0' is fixed,



Ch. II, § 53] HOMOTHECY 51

and since O'B' = OB, the point B' describes a circle (B'). Since the
triangle ABC remains similar to a given triangle, we have:

AC: AB' = AC: AB;

hence the locus of C is a circle (0") homothetic to the locus of B',
which proves the proposition.

As an exercise, show that the triangle AOO", where 0" is the center
of (0"), is directly similar to the given triangle.

Ftc. 38

Note. If the given circle (0), which constitutes the path of the
vertex B, is rigidly rotated about the given fixed point A through the
given angle BAC, its new position is the locus (B') of the point B'.
The locus of C is the circle which corresponds to the circle (B') in the
homothecy (A, AC: AB).

An analogous observation may be made with regard to the preced-
ing theorem (§ 51).

Concerning the distributions of the angles of the triangles ABC the
remarks made (§ 52) in connection with the preceding theorem may
be applied here.

EXERCISES

1. Construct a triangle similar to a given triangle so that one vertex shall coincide
with a given point and the other two vertices shall lie on two given lines.

2. In a given triangle to inscribe a tnangle similar to a (second) given triangle, one
of the vertices being given.

3. Construct a triangle similar to a given triangle so that its vertices shall lie on
three given lines.

4. The vertex A of the variable triangle APQ is fixed, and P moves on a fixed line
CD; AP meets a fixed line parallel to CD in the point R, and PQ = AR; the
angle APQ is constant. Prove that the locus of Q is a straight line.
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5. A variable regular hexagon has a fixed vertex and its center describes a straight
line. Show that the remaining vertices describe straight lines and that these
lines are concurrent.

6. Construct a triangle similar to a given triangle so that one vertex shall coincide
with a given point and the other two vertices shall lie on two given circles.

7. Construct a triangle similar to a given triangle so that its vertices shall lie on
three given circles.

8. Construct a triangle similar to a given triangle so that one vertex shall coincide
with a given point, another shall lie on a given circle, and the third on a given line.

SUPPLEMENTARY EXERCISES

1. The lines AL, BL, CL joining the vertices of a triangle ABC to a point L meet
the respectively opposite sides in A', B', C'. The parallels through A' to BB',
CC' meet AC, AB in P, Q, and the parallels through A' to AC, AB meet BB',
CC' in R, S. Show that the four points P, Q, R, S are collinear.

2. ABCD is a rhombus, and P, Q, R, S are the circumcenters of the triangles BCD,
CDA, DAB, ABC. Prove that the midpoints of the segments AP, BQ, CR, DS
form a rhombus similar to ABCD.

3. Construct a triangle ABC given its circumcircle, center 0, so that area
OBC:OCA:OAB = p:q:r, where p, q, r are given line segments.

4. Locate two points D, E on the sides AB, AC of a triangle ABC such that
AD: DE: EC = p: q: r, where p, q, r are given line segments.
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PROPERTIES OF THE TRIANGLE

A. PRELIMINARIES

54. Problem. Divide a given segment, AB, internally and externally in
a given ratio p:q.

Through the ends A, B (Fig. 39) of the given segment draw any
pair of-parallel lines AF, GBH, and lay off AF = p, BG = BH = q.

G
FIG. 39

The lines FG, FH meet the line AB in the required points C, D, as
is readily seen from the two pairs of similar triangles CAF and CBG,
DAF and DBH.
55. Remark I. To avoid ambiguity the statement of the problem
should indicate whether the segments of AB proportional to p and q
shall be adjacent to A and B, respectively, as is the case of the figure,
or to B and A. Otherwise there is another pair of points, C, D', the
symmetric of C, D with respect to the midpoint M of AB, which solves
the problem. However, in actual applications the nature of the

53
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problem usually distinguishes between the points A, B and thus leads
to only one pair of points of division.
56. Remark II. If p > q, we have AC > CB and AD > DB, so
that the midpoint M of AB lies outside the segment CD. The same
relative position of the points M, C, D prevails, if p < q.

If p = q, the point C coincides with M, and there is no external
point of division, since FH is then parallel to AB.
57. Theorem. If the points C, D divide the segment AB internally and
externally in the ratio p:q, the points B, A divide the segment DC in-
ternally and externally in the ratio (p + q): (p - q).

We have (Fig. 39) :

hence:

AC: CB = p:q, AD:DB = p: q;

(1) (AC+CB):CB= (p+q):q, (AD-DB):DB= (p-q):q,
(2) AC: (AC + CB) = p: (p + q), AD: (AD - DB) = p: (p - q).

Substituting AB for AC + CB and for AD - DB in (1) and (2),
and combining the two proportions in each of these two lines we
obtain:

DB:BC = (p + q): (p - q),
DA : AC = (p + q) : (p - q)

58. COROLLARY. If AB = a and CD = b, we have b = 2 apq: (p2 - q2).
Indeed, we have:

AD: AB = p: (p - q), AC: AB = p: (p + q), CD=AD-AC;

hence the announced result.
59. Definitions. Instead of saying that the points C, D (§ 57) divide
the segment AB internally and externally in the same ratio, we shall
sometimes say that the points C, D divide the segment A B harmonically,
or that the points C, D separate the points A, B harmonically, or that
the points C, D are harmonic conjugates with respect to the points A, B.

The preceding proposition (§ 57) states that the relation between
the two pairs of points is mutual, so that the points A, B, in turn,
divide the segment CD harmonically, and the points A, B separate
the points C, D harmonically. We may thus refer to the two pairs of
points A, B and C, D as two pairs of harmonic points, and to the two
segments AB, CD as two harmonic segments.
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60. Problem. Given three collinear points A, B, C, construct the har-
monic conjugate D of C with respect to the points A, B.

Through the points A, B draw any pair of parallel lines AF, GBH
(Fig. 39) and through C any transversal meeting AF, BG in F, G. On
GB lay of BH = BG. The line FH meets AB in the required point D.
61. Theorem. The feet of the two pairs of perpendiculars dropped upon
a given line from two pairs of harmonic points are also two pairs of
harmonic points.

Indeed, the perpendiculars are four parallel lines; hence the seg-
ments determined by their feet are to each other as the corresponding
segments determined by the two given pairs of harmonic points.
62. Theorem. If the points C, D divide the segment AB harmonically
in the ratio p: q, the midpoint 0 of the segment CD divides the segment AB
externally in the ratio p2: q2.

The point 0 lies outside the segment AB (§ 56). Now:

AO= ZCD+AC, BO=-CD-BC.

Substituting for CD, AC, BC their values (§§ 57, 58), we obtain:

AO = apt: (p2 - q2), BO = aq2: (p2 - q2);

hence the announced relation.
63. COROLLARY. We have (§ 58):

OA -OB = OC2.

64. Remark I. If M, 0 are the midpoints of the segments AB, CD,
we have:

hence:

MO=AO-AM=AO-ZAB;

MO = a(p2 + g2):2(p2 - q2).

65. Remark II. The point M lies outside the segment CD (§ 56).
66. Theorem. The sum of the squares of two harmonic segments is equal
to four times the square of the distance between the midpoints of these
segments.

We have (§ 58) :

AB2 + CD2 = a2 + 4 a2p2g2: (p2 - q2)2 = a2(p2 + q2)2: (p2 - q2)2;

hence (§ 64):
AB2 + CD2 = 4 MO2.
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67. Problem. Construct two segments given their product, t2, and their
sum, or their difference, a.

SOLUTION. Construct two segments u, v having the segment t for
mean proportional. On the perpendicular erected at one end, say B,

FIG. 40a FIG. 40b

of the segment AB = a lay off the segment BC = u, BD = v, on the
same side of AB (Fig. 40 a), or on opposite sides of AB (Fig. 40 b),
depending on whether a is the sum or the difference of the required
segments. With the point of intersection 0 of the mediators of the
segments AB, CD, as center and radius OC = OD draw a circle meet-
ing AB in the points M, M'; then MA, MB (or M'A, M'B) are the
required segments.

Indeed, we have:

MA MB = BM'-BM = BC-BD = uv = t2.

The construction above is a graphical solution of the quadratic
equations:

x2-ax+t2=0, x22-ax-t2=0.

The roots of the quadratic equations

x2+ax+t2= 0, x2+ax- 122= 0

differ from the roots of the first equations in their signs only; hence
these roots may be found by this construction. Thus the construction
gives a graphical solution of any quadratic equation whose first co-
efficient is unity.
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EXERCISES

57

1. Place two segments, of given lengths, on the same line so that they shall be
harmonic. Hint. Use § 66.

2. Show that the pairs of bisectors of the angles of a triangle determine on the
respectively opposite sides three segments such that the reciprocal of one is equal
to the sum of the reciprpcals of the other two. Hint. Use § 58.

3. Show that the internal (or external) bisector of an angle of a triangle is divided
harmonically by the feet of the perpendiculars dropped upon it from the two other
vertices of the triangle.

B. THE CIRCUMCIRCLE

68. Theorem. If a triangle inscribed in a given circle has a constant
angle, then the opposite side is tangent to a fixed circle concentric with the
given circle.

The proposition may be considered as the converse of locus 7 (§ 11).
The proof is left to the student.
60. COROLLARY. We have the datum:

a, A, R.

70. Problem. Construct a triangle given the base, the vertical angle,
and the ratio of the distances of the midpoint of the base from the
traces, on the base, of the altitude and of the bisector of the vertical angle.

FIG. 41

Let ABC (Fig. 41) be the required triangle. Let A' be the mid-
point of BC, and D, U the traces on BC of the altitude AD and the
bisector AU of the angle A. The bisector AU, produced, and the
mediator of BC both bisect the arc BC, say, in the point E.
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From the similar right triangles ADU, EA'U we have:

A'U:UD =A'E:AD.

Now the base BC and the angle A being given, the circumcircle ABC
is determined; hence the segment A'E is known; also the first ratio in
the above proportion is known; hence the altitude AD may be
constructed. The solution of the problem is now readily completed.
71. Problem. Construct a triangle given the circumradius, the sum of
the lateral sides, and the difference of the base angles (R, b + c, B - C).

FIG. 42

Let ABC be the required triangle (Fig. 42). Let the parallel to BC
through A meet the circumcircle of ABC in K. In the isosceles trape-
zoid ABCK we have:

LABK=ABC- KBC=B-BKA=B-BCA=B-C.
The given radius R and the known angle ABK = B - C determine
the segment AK (§ 69). Thus in the triangle ABK we know the base
AK, the opposite angle B - C, and the sum of the sides:

AB+BK=AB+AC=b+c;
hence this triangle may be constructed (§ 17). The parallel to AK
through B will meet the circumcircle of A BK in the third vertex C of
the required triangle ABC.
72. Problem. Construct a triangle given the circumradius, the base,
and the product of the sum of the other two sides by one of them
[R, a, (b + c)b].

Let ABC be the required triangle inscribed in the given circle,
center 0 (Fig. 43). Produce BA and lay off AD = AC. We have
angle BDC = i BAC, and the latter angle is determined by R
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and a (§ 69). Thus if we place the side BC = a in the given circle,
radius R, we have a locus for D (§ 11, locus 7).

D

FIG. 43

Let DE be the tangent from D to the circle. We have:

DE2 = DA DB = b (b + c),

i.e., we know the length of the tangent from D to the circle (0);
hence we have a second locus for D (§ 11, locus 2), and the auxiliary
triangle DBC may thus be constructed. The mediator of CD meets
BD in the third vertex A of the required triangle ABC.

EXERCISES
Construct a triangle, given:
1. R,A,bs+c2. 9. R,b+c,h,+h.,.
2. R,A,b:c. 10.

R, R,
a, b R,

R, R,
C. 14. a, A, b(b + c).

7. R,A,2p. 15. R,b-c,B-C.
8. R, A, a - b.

73. Theorem. The angle between the circumdiameter and the altitude
issued from the same vertex of a triangle (a) is equal to the difference of
the other two angles of the triangle, and (b) is bisected by the bisector of the
angle of the triangle at the vertex considered.
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(a) Let AD be the altitude and AK the circumdiameter issued from
the vertex A (Fig. 44). The angles B and K are equal since they sub-

tend the same chord of the circumcircle; hence we have from the right
triangles ABD, ACK:

Z BAD = L KAC = 90° - B,
and:

LDAK=A-2(90°-B)=A+2B-180°=
A+2B- A -B - C=B - C.

The student may verify that the proposition holds when one of the
angles B, C is obtuse.

(b) Let AU be the bisector of the angle A. Since L BAD = CA 0,
we have angle DA U = OA U.
74. COROLLARY. In the right triangle ADU we have AD = ha,
AU = ta, and angle DAU = 2(B - C), i.e., we have the datum:

ha, ta, B - C.

75. Theorem. The difference of the two angles which an internal bisector
of an angle of a triangle makes with the opposite side is equal to the
difference of the angles adjacent to this side.

From the two triangles AUB, AUC (Fig. 44) we have:

LAUC=B+ZA, LAUB=C+ZA;
hence:

LAUC - LAUB=B - C.
76. Problem. Construct a triangle given the altitude, the median, and
the bisector issued from the same vertex (Ita, ma, Q.
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The two right triangles having for their common leg AD = ha
(Fig. 44) and for hypotenuses AA' = M. and A U = to may be con-
structed. The circumcenter 0 of the required triangle ABC lies on
the perpendicular to DA' at A' and on the line which makes with A U
an angle equal to the angle DA U (§ 73 b); hence 0 may be determined.
The circle (0, OA) meets the line DA' in the two vertices B, C of the
required triangle ABC.
77. Problem. Construct a triangle given the base, the altitude to the
base, and the bisector of the vertical angle (a, ha, ta).

Let ABC be the required triangle. Let AD = ha, AU = ta. If
F is the symmetric of B with respect to D, we have:

LFAC=LAFD-LC=B-C,
and this angle is known from the right triangle ADU (§ 73).

Let the perpendicular to BC at B meet AF in G. The right triangle
GBC may be constructed, for BC is given and GB = 2 ha. We have
thus for the vertex A two loci: the arc of a circle at the points of which
GC subtends an angle of 180° - (B - C), and the mediator of BG.
78. Problem. Construct a triangle given the base, the median to the base,
and the difference of the base angles (a, ma, B - C).

Let ABC (Fig. 44) be the required triangle. We have angle
A'OK = DAD = B - C; hence angle AOA' = 180° - (B - C).

Let A A' produced meet the circumcircle in J. We have then:
A'A A'J = A'B A'C; hence A'J = a2:4 ma.

Thus the segment A'J may be constructed as the third proportional
of the segments a, 4 ma, and the circumcenter 0 lies on the mediator
of AJ. Hence the following construction.

Place AA' = ma and on it construct the arc of a circle at which
AA' subtends the angle of 180° - (B - C). Produce AA' by A'J =
a2: 4 ma. The arc is met by the mediator of AJ in the circumcenter 0
of the required triangle. The circle (O,OA) meets the perpendicular
to OA' at A' in the vertices B, C of the required triangle ABC.

The angle subtended by AA' at 0 is equal to B - C, if the points A,
0 lie on opposite sides of BC, or, in other words, when A is an obtuse
angle.

EXERCISES
Construct a triangle, given:
1. R,ha,B-C. 3. A,ha,ta. 5. R, ha, 14-
2. Ry t B - C. 4. a, A, ha:ta. 6. R, m., B - C.
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79. Theorem. The internal and external bisectors of an angle of a
triangle pass through the ends of the circumdiameter which is perpendicular
to the side opposite the vertex considered.

The internal bisector A U of the angle A (Fig. 45) passes through the
midpoint L of the arc BLC of the circumcircle which does not *contain
the point A. The circumdiameter LL' passing through L is perpendic-
ular to BC, and the line AL' joining A to the other end L' of this
diameter is perpendicular to AL, for L'AL is a right angle; hence AL'
is the external bisector of the angle A, which proves the proposition.
80. Theorem. The angle which the external bisector makes with the
opposite side is equal to half the difference of the two angles adjacent to
this side.

The angle which the external bisector AU' (Fig. 45) makes with the
base BC has its sides respectively perpendicular to the internal bisector
AU and the altitude AD; hence the proposition (§ 73).

L'

FiG. 45
L

81. COROLLARY I. If the tangent at A to the circumcircle meets BC in
T, we have TA = TU = TU'

Indeed, we have (Fig. 45) :

LTAU = TAB + BAU, LTUA =UCA -[- UAC.

Now angle TAB = UCA, and angle BA U = UAC; hence the triangle
T A U is isosceles, and TA = T U.

The circle (T, TA) will pass through U, for TA = TU, and since
UAU' is a right angle, the circle will also pass through U'; hence
TA=TU'.
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82. COROLLARY II. The altitude AD of ABC is also an altitude of
the triangle UA U'; hence:

t t.', ha, B - C
constitute a datum such that any two of these four magnitudes being
given, the remaining two are determined.
83. Problem. Through the midpoint E of the arc BEC of a circle to
draw a secant meeting the chord BC in U and the circle again in A, so
that A U shall have a given length, I.

E
FIG. 46

Let the diameter EMF (Fig. 46) passing through E meet the chord
BC in M. From the two equiangular right triangles EUM, EFA
we have:

EF:EU = EA:EM.
Now if we put:

EF=2R, EM=m, EU=x, EA=x+t,
the proportion may be written:

and the segment x may be constructed (§ 67).

The known length of the segment EU determines the point U; hence
the required secant EUA.
84. The Problem of Pappus. Through a given point on the bisector of
a given angle to draw a secant on which the given angle shall intercept a
segment of given length.
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Let B, C (Fig. 46) be the traces of the required secant UBC = a on
the sides of the given angle BAC; the circumradius of the triangle ABC
is determined (§ 69), and in the circumcircle the bisector A U of the
angle A passes through the midpoint E of the arc BEC subtended by
BC = a. We are thus led to the following construction.

On an arbitrary line lay off B'C' equal to the given length a, and on
B'C' as chord construct the locus of the points at which B'C' subtends
an angle equal to the given angle A (§ 11, locus 7). Through the mid-
point E' of the other arc of this circle draw a secant E'U'A' meeting
B'C' in U' and the circle again in A', so that U'A' shall be equal to
the given segment AU of the bisector of the given angle (§ 83).

The line through U, on the bisector of the given angle, making with
A U an angle equal to the angle B'U'A', solves the proposed problem.

The problem has two solutions.

EXERCISES
Construct a triangle, given:
1. ha, ta, b: c. Hint. Use § 57. 5. t,', B - C, b: c.

2. ta, B - C, b:c. 6. b, c, ta.
3. ha, B - C, b:c. 7. ta, Mb, b:c.

4. ha, ta', b:c.

8. If the line joining a vertex of a triangle to the circumcenter is parallel to the
opposite side, show that the two bisectors of the corresponding angle are equal,
and conversely.

9. Construct a triangle given the base and an adjacent angle, so that the two

bisectors of this angle shall be equal.
10. (a) If the two bisectors of the angle A of the triangle ABC are equal, and the

circle having BC for diameter cuts the sides AB, AC in the points P, Q, show
that CP = CQ. (b) Construct a triangle given a side and the foot of the
altitude on this side so that the two bisectors of an angle adjacent to this side
shall be equal.

85. Theorem. The product of two sides of a triangle is equal to the
altitude to the third side multiplied by the circumdiameter.

The angle ABD = AKC (Fig. 44); hence, from the similar right
triangles:

AB: AK = AD: AC, or AB-AC=AK-AD,
i.e.,

be = 2R-h..

86. COROLLARY. The area of a triangle is equal to the product of its
three sides divided by the double circumdiameter of the triangle.
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Indeed, multiplying both sides of the above equality (§ 85) by a and
observing that aha = 2 S, where S is the area of the triangle, we have:

abc=4RS.

EXERCISES

Construct a triangle, given:

1. a, A, bc. 2. ha, ta, be.

3. Through a fixed point A of a given circle two variable chords AB, AC are drawn
so that their product is constant. Show that the chord BC is tangent to a fixed
circle.

4. Show that the product of the distances of a point of the circumcircle of a triangle
from the sides of the triangle is equal to the product of the distances of the same
point from the sides of the tangential triangle (i.e., the triangle formed by the
tangents to the circumcircle at the vertices) of the given triangle.

C. MEDIANS

87. Theorem. (a) The line joining the midpoints of two sides of a
triangle is parallel to the third side and is equal to one-half its length.
(b) The line drawn parallel to a side of a triangle through the midpoint
of another side passes through the midpoint of the third side.
88. Theorem. The three medians of a triangle meet in a point, and each
median is trisected by this point.

A

K
FIG. 4?

Let G be the point of intersection of the two medians BB', CC'
(Fig. 47).

From the two similar triangles GBC, GB'C' we have:

BG:B'G = CG: CG = BC:B'C' = 2:1.

Thus any two medians trisect each other, which proves the proposition.
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89. Definition. The point G is called the centroid of the triangle ABC.
90. Problem. Construct a triangle given its medians (ma, mb, me).

Produce C'B' (Fig. 48) and lay off B'K = B'C'. The diagonals of
AKCC' bisect each other; hence AKCC' is a parallelogram, and AK =
CC' = mc.

Again, A'BB'K is a parallelogram, for AT is equal and parallel to
B'K; hence:

A'K=BB'=mb.

Thus the triangle AA'K has for its sides the given medians and may
be constructed.

To pass to the required triangle we observe that A A' is bisected by
C'B'K, in L; hence KL is a median of AA'K and is therefore known.
Moreover:

C'L = LB' = 1KL;

hence the points B', C' may be determined and the triangle ABC
readily completed.
91. Theorem. With the medians of a triangle a new triangle is con-
structed. The medians of the second triangle are equal to three fourths
of the respective sides of the given triangle.

A

We have seen (§ 90) that C'L = KL (Fig. 48); hence:

KL = 4KC'= 4BC= 4a,

and since KL is any one of the medians of the triangle AA'K, the pro-
portion is proved.
92. Consequence. Given a triangle, 1; with the medians of 1 as
sides a triangle, 2, is constructed; with the medians of 2 a new triangle,
3, is constructed, etc. The triangles of odd rank, 1, 3, 5, ... , are
similar, and the triangles of even rank. 2, 4, 6.... are similar. In
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each group the sides of the triangle are equal to three-fourths of the
sides of the preceding triangle.
93. Theorem. The area of the triangle having for sides the medians of a
given triangle is equal to three fourths of the area of the given triangle.

The area of the triangle AA'K (Fig. 48) is equal to the sum of the
areas of the triangles AKL and A'KL. Now these two triangles have
the same base KL and the altitude of each is equal to one-half the
corresponding altitude of the triangle ABC; hence:

area AA'K:area ABC = KL:BC =
4

(§ 91).

94. Theorem. In a given circle an infinite number of triangles may be
inscribed having for their centroid a given point, within the circle.

On the given circle (0) take an arbitrary point A and join it to the
given centroid G. On AG, produced, lay off GA' = 2 GA and join A'
to the center 0 of (0). The perpendicular to OA' at A' will meet the
circumcircle (0) in the other two vertices of the triangle ABC.

The point A yields a solution, if A' falls within the circle (0). Now
the locus of A' is a circle (N) which corresponds to (0) in the
homothecy (G, -2). Hence if (N) lies entirely within (0), every
point of (0) yields a solution. Otherwise (0) contains an arc on which
A cannot be taken.
95. Problem. Construct a triangle given an altitude and a median,
issued from the same vertex, and the angle at this vertex (h mo, A).

Let A', B' be the midpoints of the sides BC, AC of the required
triangle ABC, and AD the altitude. The right triangle ADA' may
beconstructed. The median AA' subtends at the point B' the known
angle of 180° - A, which gives a locus for B', and on the other hand
B' lies on the line joining the midpoints of AA' and AD. The point
B' is thus determined, and the triangle ABC is readily completed.

EXERCISES

1. Show that the line joining the midpoint of a median to a vertex of the triangle
trisects the side opposite the vcrtcx considered.

2. Construct a triangle given, in position, two vertices and the centroid.
3. Construct a triangle so that its medians shall lie on three given concurrent lines.

Show that one of the vertices may be taken arbitrarily on one of the given lines.
4. Show that a parallel to a side of a triangle through the centroid divides the area

of the triangle into two parts, in the ratio 4:5.
5. Show that the lines joining the midpoints of the sides of a triangle divide the

triangle into four congruent triangles.
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6. Show that the lines joining the centroid of a triangle to its vertices divide the
triangle into three equivalent triangles, and that the centroid is the only point
having this property.

7. Show that (a) in a triangle a smaller median corresponds to the greater of two
sides; (b) if two medians of a triangle are equal, the triangle is isosceles; (c) if
two medians of a triangle are proportional to the sides to which they are drawn,
the triangle is isosceles.

8. Show that the distances of a point on a median of a triangle from the sides
including the median are inversely proportional to these sides.

9. A line is drawn through the centroid of a triangle. Show that the sum of the
distances of the line from the two vertices of the triangle situated on the same
side of the line is equal to the distance of the line from the third vertex.

10. Show that the (algebraic) sum of the distances of the vertices of a triangle from
any line in the plane is equal to the sum of the distances of the midpoints of the
sides of the triangle from this line.

11. Show that the sum of the medians of a triangle is smaller than the perimeter of
the triangle and greater than three-fourths of that perimeter.

Construct a triangle, given:

12. b, c, in.. 13. Mb, in,, b. 14. a, mb, in,.
15. mb, ma, ha. Hint. The distance of C from EC h,.

96. Definition. The triangle having for its vertices the midpoints of
the sides of a given triangle is called the medial, or complementary, tri-
angle of the given triangle.
97. Theorem. A triangle and its medial triangle have the same centroid.

The median AA' of the triangle ABC bisects the segment B'C'
(Fig. 48); hence A A' is also a median of the triangle A'B'C'. Simi-
larly for the other medians.
98. Consequence. The complementary triangle A'B'C' corresponds
to the given triangle ABC in the homothecy (G, 2:- 1).

The point P' which corresponds in this homothecy to a given point
P is called the complementary point of the point P.
99. Definition. The triangle formed by the parallels to the sides of
a given triangle through the respectively opposite vertices is called the
anticomplementary triangle of the given triangle.
100. Theorem. A triangle and its anticomplementary triangle have
the same centroid.

Indeed, if we start with A'B'C' (Fig. 48) as the given triangle,
then ABC is its anticomplementary triangle; hence the proposition
(§ 97).
101. Consequence. The anticomplementary triangle A"B"C" cor-
responds to the given triangle ABC in the homothecy (G, 1: -2).
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A point P" which 'corresponds in this homotbecy to a given point P
is called the anti complementary point of the point P.
102. Problem. Construct a triangle given an angle and the medians to
the sides of this angle (A, Mb, m,) .

Having placed BB' = mb, we have a locus for the vertex A (§ 11,
locus 7), from which we derived a locus for the vertex C by the ho-
mothecy (B', -1). Now, having located the centroid G on BB', the
circle (G, a 2 m) is a second locus for the vertex C.
103. Problem. Construct a triangle given the base, the ratio of the me-
dians to the lateral sides, and the difference of the squares of these sides
(a, mb:m, b2 - c2).

Having placed BC = a, we have (Fig. 47) :
BG:CG=

hence G lies on a known circle (§ 11, locus 11), from which we derive
a locus for the vertex A by the homothecy (A', 1:3). A second locus
for A is given by the condition b2 - c2 (§ 11, locus 12).
104. Problem. The right angle ACB revolves about its vertex C and
its sides meet the two fixed perpendicular lines OAX, OBY in A and B.
Find the locus of the centroid of the triangle ABC.

The line AB is the diameter of the circle OACB; hence the midpoint
M of AB lies on the mediator, d, of the chord OC, which is fixed. The
locus of M is therefore the line d, and the locus of the centroidG of ABC
is the line corresponding to din the homothecy (C, 2:3).
105. Definitions. Two points on the side of a triangle are said to be
isotomic points, if they are equidistant from the midpoint of this side.

The lines joining two isotomic points to the vertex opposite the
side considered are said to be isotonic lines.

EXERCISES
Construct a triangle, given:

1. mb, in., hb. 3. a, A, mb.
2. b, c, Mb- 4. a, h., mb: 112..

5. If L is the harmonic conjugate of the centroid G of a triangle ABC with respect
to the ends A, A' of the median AA', show that LA' - A'A.

6. Construct a triangle given, in position, the centroid, one vertex, and the direc-
tions of the sides through this vertex.

7. Find the locus of the centroid of a variable triangle having a fixed base and a
fixed circumcircle.

8. The complementary triangle and the anticomplementary triangle of a given
triangle are homothetic. Find the center and the ratio of this homothecy.
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9. The centroids of the four triangles determined by the vertices of a quadrilateral
taken three at a time form a quadrilateral homothetic to the given quadri-
lateral. Find the center and the ratio of this homothecy.

10. From the midpoints A", B", C" of the lines B'C', C'A', A'B' joining
the projections A', B', C' of a point P upon the sides of the triangle ABC,
perpendiculars are dropped upon the sides BC, CA, AB of ABC. Show that
these perpendiculars are concurrent. Hint. The two sets of perpendiculars
are corresponding lines in the two homothetic figures A'B'C' and A"B"C".

11. If K, K' are two isotomic points on the side BC of the triangle ABC, and the
line AK meets the side B'C' of the complementary triangle in K", show that the
line K'K" passes through the centroid G of ABC and that K'G: GK" = 2:1.
Hint. Consider the triangle AKK'.

12. Let L, L' and M, M' be two pairs of isotomic points on the two sides AC, AB
of the triangle ABC, and L", M" the traces of the lines BL, CM on the sides
A'C', A'B' of the complementary triangle A'B'C' of ABC. Show that the
triangles AL'M', A'L"M" are inversely homothetic. Find in the figure other
pairs of homothetic triangles.

13. Construct a triangle given an angle, the sum of the two sides forming that angle,
and the median to one of these sides (A, b + c, m0).

106. Theorem. Twice the square of a median of a triangle is equal to
the sum of the squares of the two including sides diminished by half the
square of the third side.

The proof was given in connection with the derivation of locus 10,
§ 11.

We have thus, in the usual notation:

2 mat = b2 + c2 - z a2, 2 mb2 = c2 + a2 - 1 b2,
2m02=a2+b222-2c2.

107. Theorem. The sum of the squares of the medians of a triangle is
equal to three fourths the sum of the squares of the sides (§ 106).
108. COROLLARY. The sum of the squares of the distances of the cen-
troid of a triangle from the vertices is equal to one-third the sum of the
squares of the sides.
109. Theorem. If M is any point in the plane of the triangle ABC,
centroid G, we have:

MA2+MB2+MC2 = GA 2 + GB2 + GC2 + 3 MG2.

If D is the midpoint of AG, we have, applying the formula for the
median (§ 106) to the triangles MBC, MDA', MAG:

MB2 + MC2 = 2 MA'2 + 2 BC2,
MD2+MA'2 = 2MG2+2DA'2,
MA2+MG2=2MD2+1AG2.
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Now DA' = AG; hence, multiplying the second equality by 2 and
adding, we obtain, after simplification:

MA2 + MB2 + MC2 - 3 MG2 = yBC2+IAG2.

Considering, in turn, the medians BB' and CC', we obtain two
analogous relations, and adding the three, we have:

3(MA2 + MB2 + MC2 - 3 MG2) = 2 (BC2 + CA2 + AB2)
+ - -(GA2 + GB2 + GC2).

Observing that (§ 108):

BC2 + CA2 + AB2 = 3 (GA2 + GB2 + GC2),

we arrive readily at the announced result.
110. CoxoLI.kRY. If the point M (§ 109) coincides with the circum-
center 0 of ABC, we have:

3R2 = GA2 +GB2 +GC2 +3 W2,
or:

OG2 = R2 - *(a2 + b2 + c2).

EXERCISES

1. If two points are equidistant from the centroid of a triangle, show that the sums
of the squares of their distances from the vertices of a triangle are equal, and
conversely.

2. Construct a triangle, given a, m b + c.
3. Find the locus of a point which moves so that the sum of the squares of its dis-

tances from two vertices of a given triangle is equal to the square of its distance
from the third vertex of the same triangle.

4. A variable chord of a fixed circle subtends a right angle at a fixed point. Prove
that the locus of the midpoint of the chord is a circle

5. If a, b, c are the sides, and S the area, of a given triangle, show that the area of
the triangle formed by the feet of the perpendiculars from the centroid of the
triangle upon its sides is equal to:

4 Sa(a2 + b2 + c2)/9 a2b'c2.

6. Construct a triangle, given the ratios a: b, b: c, and the sum of the medians.
7. If A"B"C" is the anticomplementary triangle of the triangle ABC, and A' the

midpoint of BC, show that:

AT"' - A'C"2 = 2(AB2 - AC-).
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D. TRITANGENT CIRCLES

a. BISECTORS

111. Theorem. The angle formed by two internal (external) bisectors
equals a right angle increased (diminished) by half the third angle of the
triangle.

If I is the point of intersection of the internal bisectors BI, CI of the
triangle ABC, we have

LBIC=180°-zB-ZC=90°+?A.
The proof for the external bisectors is analogous.

112. Theorem. The foot of the perpendicular from a vertex of a tri-
angle upon a bisector issued from a second vertex lies on the side of the
medial triangle opposite the first vertex considered.

If P is the foot of the perpendicular from the vertex A upon the
bisector BP issued from the vertex B, and Q is the trace of AP on
the side BC, the two right triangles BPA, BPQ are congruent, and
the point P bisects the segment AQ; hence the proposition.
113. COROLLARY. The feet of the four perpendiculars dropped from a ver-
tex of a triangle upon the four bisectors of the other two angles are collinear.
114. Theorem. In a triangle the larger of two angles has the shorter
internal bisector.

In a triangle ABC let angle B be larger than angle C (Fig. 49), and
let BD, CE be the internal bisectors of those two angles. On the

A

FIG. 49

segment AD take the point F such that angle FBD = ACE = ECB.
Let H, G be the traces of the lines BD, BF on the bisector CE.

The two triangles FBD, FGC are similar, for they are equiangular;
hence:

(a) BF: CF = BD: CG.
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Now the triangle BFC has a smaller angle at the vertex C than at B;
hence BF < CF, and therefore, by (a), BD < CG < CE, which proves
the proposition.
115. COROLLARY. If two internal bisectors of a triangle are equal, the
triangle is isosceles.

Note. This proposition is not valid for two external bisectors.

EXERCISES

1. One vertex of a variable triangle is fixed and the opposite side, of variable length,
lies on a fixed straight line. Show that the locus of the projections of the fixed
vertex upon the bisectors of the other two angles of the variable triangle is a
straight line.

2. Show that the feet of the perpendiculars dropped from two vertices of a triangle
upon the internal (external) bisector of the third angle, and the midpoint of the
side joining the first two vertices, determine an isosceles triangle whose equal
sides are parallel *to the sides of the given triangle which include the bisector
considered.

3. If the line joining the feet of two internal bisectors of a triangle is parallel to the
third side, show that the triangle is isosceles.

4. Show that the sum of the reciprocals of the internal bisectors of a triangle is

greater than the sum of the reciprocals of the sides of the triangle.

b. TRITANGENT CENTERS

116. Theorem. The three internal bisectors of the angles of a triangle
meet in a point, the incenter I of the triangle.
117. Theorem. The external bisectors of two angles of a triangle meet
on the internal bisector of the third angle.
118. Definitions. The point Ia of the internal bisector AII0 (Fig. 50)
of the triangle ABC is called the excenter of the triangle relative to the
vertex A, or the excenter of A.

The point I, is equidistant from the three sides of the triangle and
is therefore the center of a circle (Is) touching the three sides of ABC,
the points of contact with AB, AC lying on these sides, produced,
and the point of contact with the side BC lying on this side not pro-
duced. On that account the circle (I,) and its center I, are sometimes
said to be relative to the side BC, or to the vertex A, or to the angle A.

The two analogous points Ib, 1, and two analogous circles (Ib), (Ie)
are relative to the other two vertices B, C, or to the other two sides
CA, AB (Fig. 50).
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The inscribed circle, or incircle (I) and the three escribed circles, or
excircles (Ia), (Ib), (I.) are sometimes referred to as the four tritangent

FIG. 50

circles of the triangle ABC, and their centers as the four tritangent
centers of the triangle.
119. COROLLARIES. From the two preceding theorems (§§ 116, 117)
we have:

COROLLARY I. The four tritangent centers of a triangle lie on six
lines, the bisectors of the angles of the triangle.

Each tritangent center lies on three lines, and on each line lie two
tritangent centers.

COROLLARY II. Given the six midpoints of the arcs subtended by the
sides of a given triangle on its circumcircle, the tritangent centers of the
triangle may be constructed with the ruler alone.
120. Theorem. Two tritangent centers divide the bisector on which
they are located, harmonically.
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Let U be the trace of All,, on BC (Fig. 51). The traces I, Ia of the
bisectors BI, BIa of the angle B on the base A U of the triangle BA U
divide the base A U harmonically.

Similarly for the other pairs of tritangent centers.

121. Theorem. In a triangle, a tritangent center lying on an internal
(external) bisector divides this bisector in the ratio of the sum (differ-
ence) of the sides forming the angle considered to the side opposite that
angle.

If U, U' are the traces on BC of Al, Al, (Fig. 51) we have, in the
triangle ABC:

BU:CU = c:b, BU':CU' = c:b,
BU: (BU + CU) = c: (b + c), BU': (CU' - BU') = c: (b - c),
BU: a = c: (b + c), BU':a=c:(b-c).

Now in the triangles ABU, ABU' we have:

AI:IU = c:BU, AI,:U'I, = c:BU',

or, substituting for BU, BU' the values obtained above:

AI:I U = (b + c) : a, AI,: I,U' = (b - c) : a.

Similarly for the other bisectors.
122. Theorem. Two tritangent centers of a triangle are the ends- of a
diameter of a circle passing through the two vertices of the triangle which
are not collinear with the centers considered.



76 PROPERTIES OF THE TRIANGLE [Ch. III, § 122

FIG. 52

(a) Consider the incenter I and the excenter Ia. The bisectors BI
and BIa, CI and CIa (Fig. 52) are perpendicular to each other; hence
the proposition.

Moreover, the center of this circle lies on the intersection of the
mediator of BC with II., and these two lines both pass through the
midpoint K of the arc BC of the circumcircle (0) of ABC which does
not contain the vertex A; hence the center of the circle (IIa) considered
coincides with K.

(b) Consider the two excenters Ib, I. The bisectors BIb and BIG,
CIb and CI., are perpendicular to each other; hence the proposition.

Moreover, it may be shown, in the same way as in (a), that the center
of this circle (IbIc) is the midpoint K' of the arc BC of the circumcircle
(0) of ABC which contains the vertex A.

The points K, K' (§ 121) are the ends of the diameter of the circum-
circle (0) of ABC perpendicular to the side BC. The diameters LL',
MM' of (0) perpendicular to AC, AB may each play the same role as
KK'; hence the proposition.
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123. Theorem. The four tritangent centers of a triangle lie on six
circles which pass through the pairs of vertices of the triangle and have
for their centers the midpoints of the arcs subtended by the respective sides
of the triangle on its circumcircle (Fig. 52).
124. COROLLARY. Given the midpoints of the arcs subtended by the sides
of a given triangle on its circumcircle, the tritangent centers of the triangle
may be constructed with compass alone.
125. Theorem. If a variable triangle has a fixed base and a fixed cir-
cumcircle, the tritangent centers of the triangle describe two circles passing
through the two fixed vertices and having for centers the extremities of the
circumdiameter perpendicular to the fixed side.

If the circumcircle (0) of the triangle ABC and the side BC are given,
the circles (IIa), (IL) (§ 122) are determined, regardless of the posi-
tion of the vertex A ; hence the proposition.
126. Theorem. The midpoints of the six segments determined by the
four tritangent centers of a triangle lie on a circle, namely, the circumcircle
of the triangle (Fig. 52).
127. Theorem. The product of the distances of two tritangent centers of a
triangle from the vertex of the triangle collinear with them is equal to the
product of the two sides of the triangle passing through the vertex con-
sidered.

If the side AB meets the circle (IIa) again in B', we have:

AI-Al, = AB- AB'.
Now the lines AB, AC are equally inclined on the diameter AIIa of the
circle; therefore AB' = AC; hence:

Al . Al. = AB-AC.
Similarly for the other pairs of tritangent centers.

128. Observation. The two tritangent centers on an internal bisector
of an angle of a triangle lie on the same side of this vertex, but the op-
posite is true of two tritangent centers located on an external bisector.
129. Problem. Construct a triangle given the base, the internal bisector
of the opposite angle, and the sum of the lateral sides (a, ta, b + c = s).

The two segments s, a being given, their ratio s: a is known. Divide
the given segment A U = to internally and externally in the known
ratio s: a, in the points I, Ia (§ 121); in the circle (IIa) having 11,, for
diameter draw a chord BC, of given length a, through the point U
(§ 11, locus 8), and ABC is the required triangle. The problem has
two solutions.
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130. Problem. Construct a triangle given in position the three points
where the internal bisectors produced meet the circumcircle.

The three given points K, L, M (Fig. 52) determine the circumcircle
(0) of the required triangle ABC and are the midpoints of the arcs sub-
tended by the sides of ABC on (0).

The points L, M are the centers of two circles passing through A
and through the incenter I of ABC (§ 122); hence AIK is perpendicu-
lar to LM, i.e., A is the second point of intersection of (0) with the
perpendicular from the given point K to the known line LM. The
perpendiculars from L, M to the lines MK, KL, respectively, deter-
mine on (0) the other two vertices B, C of the required triangle ABC.

EXERCISES

1. Show that an external bisector of an angle of a triangle is parallel to the line join-
ing the points where the circumcircle is met by the external (internal) bisectors of
the other two angles of the triangle.

2. Construct a triangle given the points where the external bisectors of the angles
meet the circumcircle.

Construct a triangle given, in position:

3. Ia, Ib, 1,. 4. I, Ib, L. 5. 0, I, I.

6. Construct a triangle given the base, the external bisector of the opposite angle,
and the difference of the other two sides (a, ta', b - c).

7. Construct a triangle given two sides and the distance of their common vertex
from the incenter (b, c, Al).

c. TRITANGENT RADII

131. Notation. Unless otherwise stated, the radius of the inscribed
circle or, more briefly, the inradius of a triangle will be denoted by r,
and the radii of the escribed circles or, more briefly, the exradii relative
to the vertices A, B, C of the triangle ABC by r0, rb, r, respectively.

The four radii will be referred to as the tritangent radii of the tri-
angle ABC.
132. Theorem. The inradius of a triangle is equal to the area divided
by half the perimeter.

If S is the area of the triangle ABC, we have (Fig. 53):

S = area ABI + area BCI + area CAI
= 2rc+2ra+2rb=ir(a+b+c)= pr.
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133. Theorem. An exradius of a triangle is equal to the area divided
by the difference between half the perimeter and the side of the triangle
relative to the exradius considered.

A

Ia
FIG. 53

We have (Fig. 53):

S = area ABIa + area ACIa - area BCIa
z cra.+ 2 bra - i ara = i ra(b + c - a) = ra(p - a).

134. COROLLARY I. The product of the four tritangent radii of a tri-
angle is equal to the square of its area.

rrarbr = S4: p(p - a) (p - b) (p - c) = S4:S2 = S2.

135. COROLLARY H. The reciprocal of the inradius is equal to the sum
of the reciprocals of the three exradii of the triangle.

1

+
1 + 1 (p - a) + (p - b) + (p - c) = p

rarbr0 S S r

136. Theorem. The reciprocal of the inradius of a triangle is equal to
the sum of the reciprocals of the altitudes of the triangle.

We have:
2S=2pr=aha=bhb=ch.,

2 p:r = a:ha = b:hb

(h.

c:h`

(a++c)+ 1 +hcJ,

and since 2 p = a + b + c, the proposition is proved.
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137. COROLLARY. The sum of the reciprocals of the exradii of a
triangle is equal to the sum of the reciprocals of the altitudes.
138. Theorem. If on an arbitrary line the segments DP = r, DQ = ra
are laid off in opposite senses, and the harmonic conjugate A of D with
respect to P, Q is constructed (§ 60), the segment AD is equal to the altitude
ha of the triangle relative to the same side as the exradius considered.

FIG. 54

The feet P, Q of the perpendiculars dropped from the points I, I,
(Fig. 54) upon the altitude AD of the triangle ABC divide the segment
AD harmonically (§ 61), and DP = r, DQ = ra; hence the proposition.
139. COROLLARY I. Given any two of the three segments in one of the
groups:

r, ray ha; r, rb, hb; r, ro h.,

the third segment of the group may be constructed.
For, given any three of the four harmonic points A, P, D, Q, the

fourth point is determined (§ 60).
140. COROLLARY II. The point D obviously divides the segment QP
internally in the ratio QD:DP = ra:r; hence (§ 58):

ha = 2(ra + r)rar: (rat - r2)
= 2 rra: (ra - r).

We have analogous formulas for hb and h,.
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OTHERWISE. We have (§§ 132, 133):

2S= aha = 2 Pr, and 2S= aha = 2(p- a)ra;
hence:

or:

a(ha - r) = (b + c)r, a(ha -f- ra) = (b + c)ra,

(ha - r) : (ha + ra) = r: r.-

Solving for ha we obtain the same value as above.
Note. The points P, Q divide the altitude AD internally and ex-

ternally in the ratio (§ 57):

(ra - r) : (ra + r)-

141. Theorem. If on an arbitrary line the segments DR = rb, DS = re
are laid off, in the same sense, and the harmonic conjugate A of D with
respect to R, S is constructed (§ 60), the segment AD is equal to the altitude
to the side joining the two vertices of the triangle relative to the exradii
considered.

The feet R, S of the perpendiculars from the points Ib, Ia upon AD
(Fig. 54) divide the segment AD harmonically (§ 61), and DR = rb,
DS = re; hence the proposition.
142. COROLLARY I. Given any two of the segments in one of the groups:

ha, rb, re; hb, re, ra; hc, ra, rb,

the third segment of the group may be constructed.
For given any three of the four harmonic points D, S, A, R, the

fourth point is determined.
143. COROLLARY II. The point D obviously divides the segment RS =
rb - ra externally in the ratio RD: RS = rb:re; hence (§ 58):

ha = 2(rb - re)rbre: (rb2 - re2)

= 2 rbre: (rb + r,,)-

We have two analogous formulas for hb and he.
OTHERWISE. We have (§ 133) :

2S= aha = (a + c- b)rb, 2S= aha = (a+ b- c)re;
hence:

a(ha - rb) = (c - b)rb, a(re - ha) = (c - b)re,
or:

(ha - rb) : (re - ha) = rb: re.

Solving for ha, we obtain the same value as above.
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Note. The points S, R divide the altitude AD internally and
externally in the ratio (§ 57)

(rb - re) : (rb -f- re)-

144. Data. Let A' be the midpoint of the side BC (Fig. 55), and
let X, Xa, Xb, X, be the feet of the perpendiculars from the tritangent

centers I, Ia, Ib, Ic upon the side BC. Let the parallel to BC through
I intersect the diameter KK' in K" and IX., produced, in J.

(a) The point K being the midpoint of the side M. of the triangle
IJI., we have:

KA' + A'K" = KK" = 1 ICJ = 2 IaXa -XaJ),
and:

A'K"=XaJ=r;
hence:

A'K = z

Now when R and a are given, the segment A'K is determined; hence
we have the datum:

R, a, r, - r.
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(b) The point K' being the midpoint of the side Ib' of the trapezoid
IJ,XXXb, we have:

A'K' = 2(IbXb+IaXX) = 2(rb+re)

Thus we have the datum:

R, a, rb + rr.

Analogous results are obtained considering the sides CA, AB of
the triangle and the circumdiameters perpendicular to these sides.
145. COROLLARY. The sum of the exradii of a triangle is equal to the
inradius increased by four times the circumradius.

Indeed, KK' = KA' + A'K'.
146. Carnot's Theorem. The sum of the distances of the circumcenter
of a triangle from the three sides of the triangle is equal to the circum-
radius increased by the inradius.

Indeed, we have (Fig. 55) :

OA' =OK- A'K =R- a(ra- r),
and similarly:

OB'=R - (rb-r), OC'=R -
Adding these three segments and taking into account the preceding

proposition (§ 145), we obtain the stated result.
Note. In the case of an obtuse-angled triangle the distance from

the circumcenter to the side opposite the obtuse angle is to be taken
negatively.
147. Problem. Construct a triangle given one side, the circumradius,
and the inradius (a, R, r).

In the circle of radius R construct a chord BC = a. The angle A
is now determined (§ 69), and at the point I the side BC subtends an
angle of 90° + I A (§ 111); hence we have a locus for I (§ 11, locus 7).
A second locus for I is the parallel to BC at a distance r from it. The
problem may have two solutions.
148. Problem. Construct a triangle given one base angle, the sum of the
two lateral sides, and the inradius (B, b + c, r).

Produce BA (Fig. 56) and lay off AD = AC. The triangle BID
may be constructed for we know the base BD = b + c, the angle IBD

B, and the altitude to BD = r. Now:

LDCI=DCA+ACI=IA+2C=90°--2B:



84 PROPERTIES OF THE TRIANGLE [Ch. III, § 148,149,150

hence C lies on a circle described on DI as a chord (§ 11, locus 7).
This circle is met by the second tangent, besides BD, from B to the
circle (I, r) in the vertex C of the
required triangle ABC. The third
vertex A of ABC is the intersec-
tion of BD with the second tan-
gent from C to the incircle (I, r).

Flc. 56 FIG. 57

149. Problem. Construct a triangle given the inradius, and exradius,
and a median relative to the same side of the triangle (r, ra, ma).

On an arbitrary line lay off DP = r (Fig. 57), and in the opposite
sense lay off DQ = ra. If A is the harmonic conjugate of D with re-
spect to P, Q, the segment AD is the altitude relative to the side
BC of the required triangle ABC (§ 138).

Let the circle (A, ma) meet the perpendicular to AD at D in A';
draw the perpendicular to DA' at A' and lay off, on the same side of
DA' as DQ, the segment AT =

2
(ra - r) (§ 142 a). The mediator

of AK meets A'K, produced, in the circumcenter 0 of ABC. The
circle (0, OA) meets DA' in the vertices B, C of ABC.
150. Problem. Construct a triangle given, in position, I, la, and the
length of the altitude ha, as well as the ratio ra:r.

The points which divide the segment IIa externally and internally
in the given ratio are, obviously, the vertex A and the trace U on the
side BC of the bisector Al. A tangent from U to the circle (A, ha)
meets the circle on IIa as diameter in the remaining two vertices of the
required triangle ABC. The problem may have two solutions, one
solution, or none.
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151. Problem. Construct a triangle given the base, the altitude to the
base, and the sum of the other two sides (a, ha, b + c).

The relation (§ 132):
aha = (a + b + Or

determines r as a fourth proportional, and ha, r determine ra (§ 139).
Again, a and ra, - r determine the circumdiameter (§ 146). The
triangle is now readily constructed, since we have a, ha, and R.

EXERCISES
Construct a triangle, given:
1. a, 2 p, S. 6. h t r (or ra).
2. R,r,ra. 7. ha,r,b+c.
3. a, R, ra. 8. ha, ra, b + c.
4. ha,B-C,r. 9. ha,B-C,r,.
5. ha, B - C, ra. 10. ra, r, 2 p.

It. A, rb, Hint. The centers Ib, I, are readily determined on the external bisec-
tor of A by parallels to the sides of this angle.

12. a, rb, r,.
13. Show that in a variable triangle having a fixed incircle the sum of the reciprocals

of the exradii is constant.
K,

K
FIG. 68

152. Euler's Theorem. The distance, d, between the circumcenter and
the incenter of a triangle is given by the relation:

d2=R(R-2r),
where R and r are the circumradius and the inradius, respectively.

We have (Fig. 58) :
(R.+d)(R - d),
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and (§ 122 a):

hence:

(a)

1K = KC = BK;

R2 - d2 = AI KC.

On the other hand, the two right triangles AIZ, KK'C are similar,
for angle IA Z = K'; hence:

(b)

and the announced relation follows from (a) and (b).
153. Theorem. The distances between the circumcenter and the excenters
Ia, Ib, I, of the triangle ABC are given by the relations:

0Ia2=R(R+2re), OIb2=R(R+2rb), 0I.2=R(R+2re).
The proofs are analogous to the preceding one (§ 152).

154. COROLLARY.

11. 2 = 4R(ra - r), 4R(rb + re).

Indeed, applying the formula for the median (§ 106) to the two
triangles 0IIa, OI ,I,, we have:

OI2 + 01.2 = 2 OK2 + 1 11.2, 01b 2 + 2 OK'2 + 2 Iblc2,

and using the preceding formulas (§ 153) we obtain the announced

relations.
We have analogous formulas for the segments IIb, III, Ialb, 1.1,-

155. Theorem. If the line of centers d of two given circles (0, R), (I, r)
satisfies the relation:

0I2=d2=R(R-2r),
an infinite number of triangles may be circumscribed about the circle
(1, r) which shall also be inscribed in the circle (0, R).

From any point A (Fig. 58) of the circle (0, R) draw two tangents
AB, AC to the circle (I, r). The line AI bisects the angle BAC, and
it follows from the given relation that:

AI-1K = 2Rr;

from the similar triangles AIZ, KK'C we have:

AI CK = 2Rr,

and therefore 1K = KC. Thus I is the incenter of the triangle ABC
(§ 122 a), which proves the proposition.
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EXERCISES

1. If the inradius of a triangle is equal to half the circumradius, show that the
triangle is equilateral.

2. Construct a triangle given the inradius, the circumradius, and the difference of
two angles (r, R, B - C). Hint. Consider the triangle AIO.

3. In a variable triangle having a fixed circumcircle and a fixed incircle the sum of
the exradii is constant.

4. Prove the formulas:

(a) OP + 07,2 + 01b2 + 01,1 = 12 R.
(b) 11,2 + IIb2 + 11,2 = 8 R(2 R - r).
(c) I,Ib2 + 7a42 + I,1,2 = 8 R(4 R + r).

5.- If JJ' is the diameter of the incircle of a triangle perpendicular to the diameter
of that circle passing through the circumcenter 0 of the triangle, show that the
perimeter of the triangle OJJ' is equal to the circumdiameter of the given tri-
angle.

d. POINTS OF CONTACT

156. Notation. Unless otherwise stated, the points of contact of the
four tritangent circles (I), (Ia.), (Ib), (Ia) of the triangle ABC with the
side BC will be denoted by X, Xa, Xb, Xc. The letters Y and Z will
be used for the sides CA and AB, respectively.
157. Theorem. The distance of a vertex of a triangle from the point of
contact of the inscribed circle with a side issued from this vertex is equal
to half the perimeter decreased by the length of the side opposite the vertex
considered.

We have (Fig. 59) :

AZ=AY, BZ = BX, CX = CY.
Now:

hence:

AZ+AY= AB+AC- BZ-CY
= AB+AC-BX-CX
=AB+AC-BC=2p-2a;

AZ=AY=p-a.
Similarly:

BZ=BX=p-b, CX=CY= p-c.
158. Theorem. The distance of a vertex of a triangle from the point of
contact of the excircle relative to this vertex with a side issued from tkte
vertex considered equals half the perimeter of the triangle.
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A

Ia
FIG. 59

We have (Fig. 59) :

AZ, = A Ya, BX, = BZa, CX, = CYa.
Now:

hence:

Similarly:

AZa+AY,= AB+AC+BZ4+CYa
=AB+AC+BXa+CX4
=AB+AC+BC=2p;

AZ,=AY,=p.

BXb=BZb=CXc=CYc= p.

159. COROLLARY. We have (Fig. 59):

BX,=BZa=AZ,-ABp-c,
CX,=CYa=AY,-AC=p-b.

Similarly for the other two sides of the triangle.
160. Theorem. The points of contact of a side of a triangle with the
incircle and the excircle relative to this side are two isotomic points
(§ 105).

Indeed, we have (§§ 157, 159):

BX=p-b, CX,=p-b.
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161. COROLLARY. We have:

XXa=BC --BX-CXa=a-2(p-b)=b-c.
Similarly :

89

YYb=a-c, ZZ,=a-b.
162. Theorem. ZZa = YYa = a. (Fig. 59.)

We have:

ZZa=BZ+BZa=p-b+p-c=2p-(b+c);
hence the proposition.

Similarly for the other sides of the triangle.
163. Theorem. The two points of contact of a side of a triangle with
the two excircles relative to the other two sides are two isotomic points.

The distance between these two points of contact is equal to the sum of
the other two sides.

We have (Fig. 60) :

BX,=CX,-CB= p-a, CXb=BXb-BC= p-a;
hence the points Xb, X, are isotomic.

XbX`=XbC+BC+BXa= (p-a)+a+ (p-a)=b+c,
which proves the second part of the proposition.

Similarly for the other sides of ABC.

Xo Xb
FIG. 60
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164. Theorem. YbY, = ZbZ, = a. (Fig. 60.)
We have:

YbVC=CYO-CYb=p-CXb=p- (p-a),
hence the proposition.
165. Suggestion. The six points B, C, X, Xa, Xb, X, on the side BC
determine 6. - = 15 segments. The student is advised to list these
segments, with their values, in terms of the sides of the triangle. The
same thing may be done for the segments on the other sides of ABC.
166. Datum. Let the parallel to BC through I meet I. Xa, produced,
in J (Fig. 61). We have (§ 73):

LJIaI = L XIIa = 2 (B - C).

Thus, considering the right triangle JII., we have the datum:

b-c, B-C, ra+r.

167. Datum. Let the parallel to BC through I, meet IbXb in J'
(Fig. 61). We have (§ 80):

LIbJJT = (B - Q.
Thus, considering the right triangle IbI J', we have the datum:

b+c, B-C, rb-rc.
168. Theorem. The ratio of the area of a triangle to the area of the tri-
angle determined by the points of contact of the sides with the incircle is
equal to the ratio of the circumdiameter of the given triangle to its inradius.
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In the two triangles ABC, IYZ (Fig. 59) the angles at A and I are
supplementary; hence:

area IYZ : area ABC = r2: be = r2a : abc,

and we have analogous relations for the triangles IZX and IX Y.
Adding the three relations, we have:

area X YZ : area ABC = r2(a + b + c) : abc;

hence (§§ 132, 86) the stated result.
As an exercise, state and prove analogous propositions relating to

the points of contact with excircles.
169. Problem. Construct a triangle given the perimeter, an angle, and
the internal bisector of that angle (2 p, A, Q.

The triangle AIaZa (Fig. 59) may be constructed. On AIa lay off
A U = to and draw the circle (Ia, I,Z6). The line AZ,,, the second
tangent from A to this circle, and a tangent drawn to it from the
point U are the three sides of the required triangle.

The problem may have two, one, or no solutions.
170. Problem. Construct a triangle given an angle, the sum of the two
including sides, and the inradius (A, b + c = s, r).

The triangle AIZ (Fig. 59) may be constructed. We have thus
AZ = p - a = I (b + c - a), and since b + c is given, we have a, and
the problem is reduced to (a, A, r).
171. Problem. Construct a triangle given the difference of the two
lateral sides, a base angle, and the inradius (b - c, B, r).

The triangle BIX (Fig. 59) may be constructed. Producing BX by
the length '(b - c) we obtain the midpoint A' of BC (§§ 160, 161);
hence the vertex C. The two tangents from the points B, C to the
circle (I, r) intersect in the third vertex of the required triangle ABC.
172. Problem. Construct a triangle given the difference of two sides,
the altitude to one of these sides, and the inradius (b - c, hb, r).

The triangle IXX. (Fig. 62) may be constructed. Since the mid-
point A' of XXa is also the midpoint of BC, the perpendicular from
A' to AC is equal to hb. Draw the circles (I, Y) and (A', j hb). A
common external tangent to these two circles meets XA'X, in the
vertex C of the required triangle, and the symmetric B of C with
respect to A' is a second vertex of the triangle; the third vertex A
is the trace of the tangent from B to (I, r) on the common tangent
considered.



92

FIG. 62

Xa D B U C Xb
FIG. 63

173. Problem. Construct a triangle given the internal and external
bisectors of an angle, and the sum of the sides including that angle

Let ABC be the required triangle (Fig. 63). The right triangle
AUU' may be constructed, and the altitude AD of ABC is also the
altitude of A UU'. Now the tritangent centers Ib, L, are separated
harmonically by the points A, U', hence the points Xb, X. are sepa-
rated harmonically by the points D and U' (§ 61). But XbXO =
b + c (§ 163); hence the points Xb, X0 are determined by placing on
the line UDU' the segment of given length b + c so that it shall be
harmonic to the segment DU' (§ 66).

Let Ib, I,, be the points of intersection of the line AU' with the
perpendiculars to UU' at Xb, X,; draw the circles (Ib, Iab), (Is, I,XX).
A

FIG. 64

PROPERTIES OF THE TRIANGLE [Ch. III, § 173,174

The common internal tangents of these two
circles will pass through A and form with
UU' the required triangle ABC.
174. Problem. Construct a triangle given,
in position, a vertex and the points of contact
of the opposite side with the incircle and the
excircle relative to that side (A, X, Xa).

Let ABC be the required triangle (Fig: 64).
The tritangent centers I, Ia are separated
harmonically by A and U (§ 120); hence
the foot D of the perpendicular AD from
A to the base XXa is separated harmoni-
cally from U by the points X, Xa, and there-
fore the point U may be constructed (§ 60).
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Let the perpendiculars at X, X. to X V,,, meet the line A U in I, I.
The common external tangents of the circles (1, IX), (IQ, I,XQ) will
pass through A and will form with XXQ the required triangle.

EXERCISES

Construct a triangle, given:

1. 2p,A,r
2.2p,R,r,..
3. b - c,
7. b+c,B-C,r,.
8. bs-c,hb+h.,r.
9. b - c, h,-h6,r.

4. b+c,
5. b - c,
6. b+c,A,r,.

Hint. b + c and k5 + h, determine the angle A (§ 21).
10. b+c,r,h.

11. Construct a triangle given, in position, a vertex and the two points of contact
of the opposite side with the two excirdes not relative to that side.

12. Show that the line joining a vertex of a triangle to the point of contact of the
opposite side with the excirde relative to that side bisects the perimeter of the
triangle

13. Show that the three circles having for their centers the vertices of a triangle, and
passing through the points of contact of the inc rcle with the sides of the tri-
angle, are tangent to each other.

14. Show that a parallel through a tritangent center to a side of a triangle is equal
to the sum, or the difference, of the two segments on the other two sides of the
triangle between the two parallel lines considered.

15. Show that the lines tangent to the incircle of a triangle and parallel to the sides
cut off three small triangles the sum of whose perimeters is equal to the per-
imeter of the given triangle.

16. Through a given point to draw a secant so that it shall form with the sides of a
given angle a triangle of given perimeter.

17. Prove the formula: CY = rS.
18. Construct a triangle ABC given, in position, the excenter I,, the indefinite line

s, containing the corresponding side BC, and the lengths of the inradius r and
the circumradius R. Hint. The distance from 1, to s is equal to r,; hence
71, is known (§ 154), and the midpoint of 11, lies at a distance 7(r, - r) from
s (§ 144 a).

19. Show that (a) the sum of the legs of a right triangle diminished by the hypote-
nuse is equal to the diameter of the inscribed circle; (b) the altitude upon the
hypotenuse of a right triangle is equal to the inradius of the triangle increased
by the sum of the inradii of the two triangles into which the altitude divides the
given triangle.

20. Show that the area of a right triangle is equal to the product of the two segments
into which the hypotenuse is divided by its point of contact with the incircle.
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E. ALTITUDES

a. THE ORTHOCENTER

175. Theorem. The three altitudes of a triangle are concurrent.
Let H be the point of intersection of the altitudes BE, CF of the

triangle ABC (Fig. 65), and let the line AH meet BC in D. The

FIG. 66

points E, F lie on the circle having BC for diameter, and in the cyclic
quadrilateral BCEF we have angle FCB = FEB. Similarly, in the
cyclic quadrilateral AEHF, we have angle FEH = FAH; therefore:

L BAD = FAH = FEH = FEB = FCB.

Thus the two triangles ABD, BCF have the angle B in common and
two other angles equal; hence:

L ADB = BFC = 90°,

i.e., AHD is the third altitude of the triangle ABC.
176. Definition. The common point of the three altitudes is called the
orthocenter of the triangle. It will usually be denoted by the letter H.
177. Theorem. In a given triangle the three products of the segments
into which the orthocenter divides the altitudes are equal.

Indeed, in the two similar triangles BHF, CHE we have (Fig. 65) :

HF: HE = BH: CH, or CH HF = BH HE,
and we may prove, in the same way, that BH HE = AH HD.

OTHERWISE. In the circle BCEF (Fig. 65) we have:

BH HE = CH HF.
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178. Theorem. The segment of the altitude extended between the ortho-
center and the second point of intersection with the circumcircle is bisected
by the corresponding side of the triangle.

Angle BD'D = C (Fig. 65), for they intercept the same arc AB on
the circumcircle, and angle BHD = C, because the sides of the two
angles are respectively perpendicular; hence the triangle BHD' is
isosceles, and since BD is perpendicular to HD', we have HD = DD'.
179. COROLLARY. The product of the segments into which a side of a
triangle is divided by the foot of the altitude is equal to this altitude multi-
plied by the distance of the side from the orthocenter.

Indeed, in the circumcircle of ABC (Fig. 65) we have DB DC =
DA-DD', and DD' = DH (§ 178).
180. Theorem. The circumcircle of the triangle formed by two vertices
and the orthocenter of a given triangle is equal to the circumcircle of the
given triangle.

The two triangles HBC, D'BC (Fig. 65) are congruent (§ 178), and
the circumcircle of D'BC coincides with the circumcircle of ABC;
hence the proposition.
181. Theorem. Any three equal circles having for centers the vertices of
a given triangle cut the respective sides of the medial triangle in six points
equidistant from the orthocenter of the given triangle.

Let U, U'; V, V'; W, W' be the points of intersection of the sides
B'C', C'A', A'B' of the medial triangle A'B'C' of the triangle ABC
with the three circles, of equal radii, having for centers the vertices
A, B, C (Fig. 66).
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If H is the orthocenter of ABC and P the trace of the altitude AD
on the side B'C', we have:

hence:

PU2= PU'2= AU'- AP2=HU2-HP2;

AU2 - HU2 = AP'- HP2 = (AP + PH)(AP - PH)
= AH(PD - PH) =

or:

HU2 = AU2 -

Now, by assumption:
AU = BV = CW;

hence 1177):
HU=HV=HW.

182. Problem. Construct a triangle, given its altitudes (ha, hb, he).
We have:

aha = bhb = ch, (= 2 S).

Dividing by hahb, we obtain:

a:hb = b:ha = c:m,

where in = hahb:h, and is therefore readily constructed as a fourth
proportional to the three given altitudes.

The required triangle is thus similar to the triangle DEF. in which
EF = hb, FD = ha, and DE = m. On the altitude DK of this tri-
angle lay off DL = ha. The parallel through L to EF meets DE, DF
in the vertices B, C of the required triangle ABC, whose third vertex A
coincides with D.

The solution of the proposed problem depends upon the construc-
tion of the triangle DEF, so that we must have:

ha+hb>In > ha - hb,
or, replacing m by its value and dividing by hkb:

(hb + ha/ > h, > U, Y.)

EXERCISES

1. Prove that the circumcenter of a triangle is the orthocenter of its medial tri-
angle.

2. Construct a triangle, given, in position, the orthocenter and a vertex, and the
directions of the sides passing through that vertex.

3. Construct a triangle, given, in position, the orthocenter and two vertices.
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4. Construct a triangle, given, in position, the feet of the altitudes to the two lateral
sides, and the line on which the base is located.

5. If p, q, r are the distances of a point inside a triangle ABC from the sides of the
triangle, show that:

(p:ha) + (q:ha) + (r: )k) = 1.
How should the statement of the problem be modified to make it applicable to
points outside the triangle?

6. Show that the three perpendiculars to the sides of a triangle at the points iso-
tomic to the feet of the respective altitudes are concurrent.

7. Show that with the altitudes of a given triangle as sides it is possible to construct
a second triangle, if, and only if, the reciprocal of one side of the given triangle
is smaller than the sum and greater than the difference of the reciprocals of the
other two sides of the given triangle.

8. The perpendicular at the orthocenter H to the altitude HC of the triangle ABC
meets the circumcircle of HBC in P. Show that ABPH is a parallelogram.

Construct a triangle, given:

9. hb, h,, ma. 10. ha, ma, h6.

11. Find the locus of the orthocenter of a variable triangle having a fixed base and
a constant vertical angle.

12. In order to draw a line through a given point M and the inaccessible point of
intersection of two given lines p, q, drop the perpendiculars u, v from M upon
p, q, respectively. The required line is the perpendicular from M to the line
joining the points (uq) and (pv). Justify this construction.

b. THE ORTHIC TRIANGLE

183. Definition. The triangle having for its vertices the feet of the
altitudes of a given triangle is called the orthic triangle of the given
triangle.
184. Theorem. The three triangles cut off from a given triangle by the
sides of its orthic triangle are similar to the given triangle.

The angles B and AEF (Fig. 65) are equal, for each is supplementary
to the angle FEC of the cyclic quadrilateral BCEF, and angle AFE=C,
for a similar reason; hence the triangles AEF, ABC are similar.

Likewise for the triangles BDF, CDE.
185. Definition. Two opposite sides of a cyclic quadrilateral are said
to be antiparallel with respect to the other two sides of the quadri-
lateral.

Thus EF, BC (Fig. 65) are antiparallel with respect to AB, AC; and
FD, AC are antiparallel with respect to AB, BC.
186. Theorem. A vertex of a triangle is the midpoint of the arc de-
termined on its circumcircle by the two altitudes, produced, issued from
the other two vertices.
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The quadrilateral BCEF being cyclic (Fig. 65), we have angle
ABE = ACF; hence arc AE' = arc AF'.

Similarly for the vertices B and C.
187. Remark. The line EF joins the midpoints of two sides of the
triangle HE'F'; hence EF is parallel to the side EF', and EF = i E'F'.
Similarly for the other sides of the orthic triangle DEF. Hence the
two triangles DEF, D'E'F' correspond to each other in the homothecy
(H, 1).
188. Theorem. The radii of the circumcircle passing through the ver-
tices of a triangle are perpendicular to the corresponding sides of the
orthic triangle.

Indeed, the radius OA is perpendicular to the chord E'F' (§ 186),
and therefore to EF (§ 187).
189. COROLLARY. The angle which a side of a triangle makes with the
corresponding side of the orthic triangle is equal to the difference of the
angles of the given triangle adjacent to the side considered (§ 73).
190. Definition. The tangents to the circumcircle at the vertices of
a given triangle form a triangle called the tangential triangle of the given
triangle.
191. Theorem. The tangential and the orthic triangles of a given tri-
angle are homothetic.

Indeed, corresponding sides of these two triangles are perpendicular
to the same circumradius of the basic triangle (§ 188).
192. Theorem. The altitudes of a triangle bisect the internal angles of
its orthic triangle.

The line D'A (Fig. 65) bisects the angle F'D'E' (§ 186), and the
lines DF, DE are respectively parallel to D'F', D'E' (§ 187); hence
D'DA also bisects the angle FDE. Similarly for the other altitudes.

O mERwisE. From the three cyclic quadrilaterals BDHF, BCEF,
CDHE (Fig. 65), we have:

LHDF=HBF=EBF=ECF=ECH=EDH.
193. COROLLARY. The sides of a triangle bisect the external angles of its
orthic triangle.

The vertices and the orthocenter of a given triangle are the tritan-
gent centers of the orthic triangle of the given triangle.
194. Problem. Construct a triangle given the points where the altitudes
produced meet the circumcircle.

The three given points D', E', F' determine the circumcircle (0) of
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the required triangle ABC whose vertices are the midpoints of the
arcs D'E', E'F', F'E' (§ 186).

How many solutions may the problem have?

EXERCISES

1. If 0 is the circumcenter and H the orthocenter of a triangle ABC, and AH, BH,
CH meet the circumcircle in D', E', F', prove that the parallels through D', E',
F' to OA, OB, OC, respectively, meet in a point.

2. Show that (a) the product of the segments into which a side of a triangle is
divided by the corresponding vertex of the orthic triangle is equal to the product
of the sides of the orthic triangle passing through the vertex considered; (b) the
product of the six segments into which the sides of a triangle are divided by
the feet of the altitudes is equal to the square of the product of the three sides of
the orthic triangle.

3. If P, Q are the feet of the perpendiculars from the vertices B, C of the triangle
ABC upon the sides DF, DE, respectively, of the orthic triangle DEF, show that
EQ = FP. Hint. Use § 193.

4. DP, DQ are the perpendiculars from the foot D of the altitude AD of the triangle
ABC upon the sides AC, AB. Prove that the points B, C, P, Q are concyclic,
and that angle DPB = CQD.

5. Show that the four projections of the foot of the altitude on a side of a triangle
upon the other two sides and the other two altitudes are collinear. Hint. Use
§§ 193, 135.

6. Show that the perimeter of the orthic triangle of an acute-angled triangle ABC
is smaller than twice any altitude of ABC. Hint. Use § 192.

FIG. 67

195. Theorem. The distance of a side of a triangle from the circumcenter
is equal to half the distance of the opposite vertex from the orthocenter.

Let L be the diametric opposite of the vertex C on the circumcircle
(Fig. 67); the segment OA' joins the midpoints of two sides of the
right triangle BCL; hence OA' = z BL.
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On the other hand, the pairs of opposite sides of the quadrilateral
ALBH are respectively perpendicular to the lines AC, BC; hence
ALBH is a parallelogram, and BL = AH, which proves the proposi-
tion.
196. Theorem. In a triangle the distances of the vertices from the ortho-
center, increased by the corresponding exradii, are equal (Fig. 55).

We have (§ 144):

ra-r= 2KA'= 2(KO-OA');
hence (§ 195):

20A'+ra= AH+ra= 2KO+r= 2R+r,
and similarly:

BH+rb=CH +r0= 2R+r.
197. Theorem. The ratio of a side of a triangle to the corresponding
side of the orthic triangle is equal to the ratio of the circumradius to the
distance of the side considered from the circumcenter.

The segment AH (Fig. 67) is the circumdiameter of the triangle
AEF, and the lines BC, EF are corresponding sides in the two similar
triangles AEF, ABC (§ 184); hence (§ 195):

BC:EF = 2 R:AH = R:OA'.

198. COROLLARY. The sum of the ratios of the sides of the orthic tri-
angle to the corresponding sides of a given acute-angled triangle is equal
to the ratio of the sum of the circumradius and the inradius of the given
triangle to the circumradius of the same triangle.

Indeed, the sum of these ratios is equal to the sum of the distance
of the sides of the given triangle from the circumcenter divided by the
circumradius; hence (§ 146) the proposition.
199. Theorem. The perimeter of the orthic triangle of an acute-angled
triangle is equal to the doubled area of the given triangle divided by the
circumradius of the given triangle.

If e, f, g are the sides of the orthic triangle of the triangle ABC, we
have (§ 197):

e +f+g =
and the sum in the parentheses represents the double area of ABC;
hence the proposition.
200. Problem. Construct a triangle given, in position, the traces D, U,
A' on the base of the triangle of the altitude, the internal bisector, and the
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median issued from the opposite vertex, and the distance, d, of that vertex
from the orthocenter.

On the perpendicular to DUA' at A' lay off A'0 = d, and 0 is
the circumcenter of the required triangle ABC (§ 193). The point A
lies on the perpendicular to DUA' at D. Now the bisector of the
angle A is also the bisector of the angle DAO (§ 73); hence the point A
lies on a tangent from 0 to the circle (U, UD). Thus A may be de-
termined.

The circle (0, OA) meets the line DUA' in the two vertices B, C of
ABC.

EXERCISES

1. In the triangle ABC show that: AHI + BO = 4 0A2.
2. Construct a triangle given, in position, a vertex, the midpoint of the opposite

side, and the orthocenter.
3. Construct a triangle given, in position, the circumcircle and the orthocenter, and

the length of one side.
4. Construct a triangle given the circumradius, the distance of a vertex from the

orthocenter, and the median issued from that vertex.
5. Construct a triangle given the base, the distance of the opposite vertex from the

orthocenter, and the radius of the inscribed circle.
6. A variable line of constant length has its extremities on two fixed intersecting

lines. Prove that the locus of the orthocenter of the variable triangle formed by
the three lines is a circle.

7. The base BC and the circumcircle (0) of a variable triangle ABC are fixed. rind
the locus of the orthocenter of the triangle having for vertices the traces on (0)
of the internal bisectors of the angles of ABC.

c. THE EULER LINE

201. Theorem. The circumcenter, the orthocenter, and the centroid of a
triangle are collinear, and the distance from the centroid to the orthocenter
is equal to twice the distance from the centroid to the circumcenter.

Let Q be the point where the altitude AD of the triangle ABC is
met by the line OG joining the circumcenter 0 to the centroid G of the
triangle. The two triangles AGQ, OGA' are similar; hence:

GQ:OG = AG:GA' = 2:1.

Now if we take another altitude, its point of intersection with OG will
be the same point Q, since GQ = 2 OG. In other words, the point Q
coincides with the orthocenter H of ABC, and we have GH = 2 GO.
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It should be noticed that we have here a new proof that the altitudes
of a triangle meet in a point (§ 173), and also that AH = 2 OA'
(§ 195).
202. Definition. The straight line containing the circumcenter, the
orthocenter, and the centroid of a triangle is called the Euler line of
the triangle.
203. Theorem. We have:

OH2 = 9 R2 - (a2 + b2 + c2),
GH2 = 4 R2 - 4(a2 + b2 + c2).

Indeed, we have OH = 3 OG, GH = 2 OG (§ 201) ; hence the formulas
(§ 110).
204. Theorem. The sum of the squares of the distances of the vertices
of a triangle from the orthocenter is equal to twelve times the square of the
circumradius diminished by the sum of the squares of the sides of the
triangle.

HA2+HB2+HC2= 12R2- (a2+b2+c2).

The formula follows readily from previously established relations
(§§ 108, 109, 203).
205. Theorem. The homothetic center of the orthic and the tangential
triangles of a given triangle (§ 191) lies on the Euler line of the given
triangle.

The tangential triangle (T) and the orthic triangle DEF of the
given triangle ABC have for their respective incenters the circum-
center 0 and the orthocenter H (§ 193) of ABC; hence the points 0, H
are corresponding points in two homothetic figures, and are therefore
collinear with the homothetic center of these figures, which proves the
proposition.

If ABC is obtuse-angled, the points 0, H are corresponding excenters
of the triangles (T) and DEF.

EXERCISES

1. Construct a triangle given, in position, the points 0 and A, and the lengths HA
and GA.

2. Construct a triangle given, in position, the circumcircle and the centroid, and the
difference of two angles.

3. Two rectangular chords AB, CD of a circle revolve about a fixed point P. Show
that the orthocenters of the variable triangles ABC, ABD describe the same
circle. Find the loci of their centroids.
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4. The Euler line of a triangle passes through a vertex of the triangle only if the
triangle is either isosceles, or right-angled.

5. The line joining the centroid of a triangle to a point P on the circun circle bisects
the line joining the diametric opposite of P to the orthocenter.

F. THE NINE-POINT CIRCLE

206. Definition. The midpoints of the segments joining the ortho-
center of a triangle to its vertices are called the Euler points of the
triangle.

The three Euler points determine the Euler triangle of the given tri-
angle.
207. Theorem. In a triangle the midpoints of the sides, the feet of the
altitudes, and the Euler points lie on the same circle.

Let P, Q, R be the Euler points of the triangle ABC (Fig. 68). The
segments QC', RB' are equal and parallel, for they join the midpoints

A

FIG. 68

of the lateral sides of the two triangles AEB, AHC having AE for
common base; moreover, these segments make right angles with the
line B'C', for AE is perpendicular to B'C'. Thus B'C'QR is a rec-
tangle; therefore QB', RC' are equal and bisect each other, say, in
the point N. In the same manner it may be shown that PA' is equal
to QB' and has N for its midpoint.

Thus N is the center of a circle (N) passing through A', B', C', P,
Q, R, and also through the points D, E, F, for the diameters PA',
QB', RC' of (N) subtend right angles at these three points, respectively.
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208. Definition. The circle (N) (§ 207) is often referred to as the
nine-point circle, and the point N as the nine-point center of the given
triangle.
209. Theorem. (a) The radius of the nine-point circle is equal to half
the circumradius of the triangle.

(b) The nine-point center lies on the Euler line, midway between the
circumcenter and the orthocenter.

We have (§ 195) :

OA'=2AH=AP=PH;
hence APA'O and PHA '0 are parallelograms. From the first it
follows that the diameter PA' of the circle (N) is equal to the circum-
radius AO of ABC, and from the second that the diagonal HO passes
through the midpoint N of the diagonal PA' and is bisected by N.

OTHERWISE. The triangles ABC, A'B'C' correspond to each other
in the homothecy (G, -2) (§ 98); hence the circumradius of ABC is
equal to twice that of A'B'C' and the circumcenters 0, N of ABC,
A'B'C' lie on opposite sides of G. Thus OG:GN = 2. Now (§ 201)
2 OG = GH; hence ON = NH.
210. Remark. The two pairs of points 0 and N, G and H separate
each other harmonically.

Indeed, the points N, 0 divide the segment HG internally and ex-
ternally in the ratio 2: 1.

Consequently, the nine-point circle (N) corresponds to the circum-
circle (0) in the homothecy (H, 2:1), as well as in the homothecy
(G, - 2: 1).
211. Theorem. The circumcenter of the tangential triangle of a given
triangle lies on the Euler line of the given triangle.

The circumcenter 0" of the tangential triangle (T) of ABC and the
circumcenter N of the orthic triangle DEF of ABC are corresponding
points in the homothecy in which (T) and DEF correspond to each
other (§ 191). Now the center of this homothecy lies on the Euler line
(§ 205), and so does the point N (§ 209 b) ; hence 0" also lies on this line.
212. COROLLARY. Let p be the inradius of DEF, and R, q, the circum-
radii of the triangles ABC, (T). The homothetic ratio of the triangles
(T), DEF is equal to the ratio R:P of their inradii, and also to the
ratio q:'R of their circumradii; hence:

R: p = q: Z R, or R2 = 2 pq.
As an exercise, state this result verbally.
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213. Theorem. The circumcenter of a triangle lies on the Euler line of
the triangle determined by the points of contact of the sides of the given
triangle with its inscribed circle.

The given triangle is the tangential triangle of the second triangle
considered; hence the proposition (§ 211).

Note. The proposition remains valid for the escribed circles.
214. Theorem. The projections of the orthocenter of a triangle upon the
two bisectors of an angle of the triangle lie on the line joining the midpoint
of the side opposite the vertex considered to the nine-point center of the
triangle.

The feet J, J' of the perpendiculars from the orthocenter H of
the triangle ABC (Fig. 69) upon the bisectors AJ, AJ' of the angle

Flo. 69

A lie on the circle (AH) having AH for diameter. Those two points
are thus the ends of the circumdiameter of the triangle AEF inscribed
in (AH) perpendicular to the side EF (§ 79).

The circle having BC for diameter passes through E, F (§ 175), and
so does the nine-point circle (§ 207); hence the centers A', N of these
circles lie on the mediator JJ' of EF, which proves the proposition.
215. Feuerbach's Theorem. The nine-point circle of a triangle touches
each of the four tritangent circles of the triangle.

In a triangle ABC (Fig. 70) the incenter I and the excenter I,, rela-
tive to the vertex A separate harmonically the point A and the trace U
of the bisector Al on the side BC (§ 120); hence the points of contact
X, X. of the tritangent circles (I), (14) with the side BC separate
harmonically U and the foot D of the altitude AD of ABC (§ 61).
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FIG. 70

The midpoint of XXa coincides with the midpoint A' of BC (§ 160);
therefore (§ 63):

(1) A'X'.

Let T be the point of contact of the second tangent UT from U to
the incircle (I). The lines UT, UX = BC are symmetric with re-
spect to A U, and so are the circumdiameter AO of ABC and the alti-
tude AD (§ 73 b); hence UT is perpendicular to AO and therefore also
to the diameter A'P of the nine-point circle (N) of ABC, where P is
the Euler point of the altitude AD (§ 207).

Let K be the second point of intersection of (I) with A'T and V =
(A'P, UT). From the two similar right triangles ATP, ATU we
have, using the relation (1):

A'X2 =

hence the two pairs of points V, P; T, K are concyclic; thus angle
PKT = TVA', i.e., PK is perpendicular to KTA', and therefore K
lies on the nine-point circle (N), since PA' is a diameter of (N) (§ 207).
Moreover, the second point of intersection M of PK with (I) is the
diametric opposite of T on (I).

The lines TM, A'VP are parallel, for both are perpendicular to
UTV; hence the point K = (PM, A'T) is collinear with the midpoints
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of the segments TM, A'P. Now TM, A'P are diameters of the
circles (I), (N), respectively, and K is a point common to these two
circles; hence (I), (N) touch each other at the point K.
216. Remark I. The point K is called the Feuerbach point of the
circle (I).

From the above proof it follows that if T is the symmetric of X
with respect to the bisector AU, the foot of the perpendicular from the
Euler point P upon the line A'T is the Feuerbach point of (I).
217. Remark II. It may be shown in a similar manner that if T.
is the symmetric of X. with respect to AU, the foot K. of the per-
pendicular PK. from P upon the line A'TQ is the Feuerbach point of
the excircle (I,).

Similarly for the other two excircles.
218. Problem. Construct a triangle, given, in position, the nine-point
center N and am vertex, A, and the directions of the internal bisector t and
of the altitude h passing through the given vertex A.

The circumcenter 0 lies on the symmetric d of the line h with re-
spect to t (§ 73 b), and also on the symmetric h' of h with respect to
N (§ 209 b); hence 0 is determined, and also H, on the line h.

If D' is the second point of intersection of AH with the circle
(0, OA), the mediator of HD' meets this circle in the other two ver-
tices B, C of the required triangle ABC.

A

219. Problem. Construct a triangle given the position of the nine-
point center, and one angle, both in magnitude and position.

Let ABC be the required triangle, with the given angle -at A
(Fig. 71). We have:

LB'NC'=2B'A'C'=2A;
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hence the isosceles triangle NB'C' has known angles. Thus if the
known vertex N of this triangle is kept fixed, and the vertex B'
describes the given fixed line AC, while the triangle remains similar to
itself, the point C' will describe a straight line (§ 51) which will
determine on the given- line AB the point C'. Now draw the
quadrilateral AC'NB' so that angle C'NB' = 2 A, and the solution is
readily completed.

EXERCISES

1. Show that the complementary and the Euler triangles of a given triangle are
congruent.

2. Show that the triangle DB'C' is congruent to the Euler triangle (Fig. 68).
3. Show that the segment OP is bisected by the median AA' (Fig. 68).
4. If P is the symmetric of the vertex A with respect to the opposite side BC, show

that HP is equal to four times the distance of the nine-point center from BC.
5. Show that the square of the tangent from a vertex of a triangle to the nine-point

circle is equal to the altitude issued from that vertex multiplied by the distance
of the opposite side from the circumcenter.

6. Prove that HA' passes through the diametric opposite of A on the circumcircle.
7. Through the vertices of a triangle ABC are drawn three parallel lines, of arbi-

trary direction, and the perpendiculars to these lines through the same vertices.
Three rectangles are thus obtained of which the sides BC, CA, AB are diagonals,
respectively. Prove that the three remaining diagonals of these three rec-
tangles meet in a point on the nine-point circle of ABC.

8. Construct a triangle given, in position, a vertex, the orthocenter, and the nine-
point center.

9. Construct a triangle given, in position, two vertices and the nine-point center.
10. Construct a triangle given, in position, the circumcenter and one vertex, and the

distances of that vertex from the orthocenter and from the centroid.
11. Construct a triangle given, in position, the nine-point circle and the centroid,

and the difference of two angles.
12. Construct a triangle given, in position, the nine-point center, a vertex, and the

foot of the altitude to a side passing through that vertex.
13. Construct a triangle given, in position, the nine-point center, a vertex, and the

projection of that vertex upon the opposite side.
14. Construct a triangle given, in position, the midpoint of the base, the midpoint

of one of the arcs subtended by the base on the circumcircle, and the Euler point
relative to the vertex opposite the base.

15. If a variable triangle has a fixed base and a constant circumradius, show that
its nine-point circle is tangent to a fixed circle.

16. A variable triangle has a fixed vertex and a fixed nine-point circle; prove that
the orthocenter describes a circle.

17. The orthocenter, the midpoint of the base, and the direction of the base of a

variable triangle are fixed. Find the locus of the nine-point center.
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18. The tangent to the nine-point circle at the midpoint of a side of the given tri-
angle is antiparallel to this side with respect to the two other sides of the
triangle.

G. THE ORTHOCENTRIC QUADRILATERAL

220. Definitions. If H is the orthocenter of a triangle ABC (Fig. 72),
the four points A, B, C, H are such that each is the orthocenter of the
triangle formed by the remaining three, as is readily seen from the
figure. Four such points will be referred to as an orthocentric group of
points, or an orthocentric quadrilateral; the four triangles formed by
taking these points three at a time are an orthocentric group of triangles.
221. Theorem. The four triangles of an orthocentric group have the
same orthic triangle.

This is immediately apparent from the figure.
222. COROLLARY I. The four triangles of an orthocentric group have
the same nine-point circle.

Indeed, this is the circumcircle of their common orthic triangle
(§ 207).
223. COROLLARY II. The circumradii of the four triangles of an ortho-
centric group are equal.

Indeed, the circumradii of these triangles are equal to the circum-
diameter of their common nine-point circle (§ 209 a).
224. Theorem. The circumcenters of an orthocentric group of triangles
form an orthocentric quadrilateral.

The circumcenters 0, Oa., Ob, O of the four triangles ABC, BCH,
CHA, HAB of an orthocentric group (Fig. 72) are the symmetrics of
the orthocenters H, A, B, C of these triangles with respect to their
common nine-point center N (§§ 222, 209 b); hence the proposition.
225. COROLLARY I. An orthocentric group of triangles and the ortho-
centric group of their circumcenters have the same nine-point circle.

The two orthocentric quadrilaterals HA BC, OOe,ObOc being sym-
metrical with respect to the nine-point center N of HA BC, the nine-
point circle of OOaObOc is the symmetric of the nine-point circle (N) of
HABC. Now the symmetric of a circle with respect to its center is
the circle itself; hence the proposition.
226. COROLLARY II. The four vertices of a given orthocentric group of
triangles may be considered as the circumcenters of a second orthocentric
group of triangles.
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Indeed, the two orthocentric groups HABC, OO.OAOC are symmetri-
cal with respect to their common nine-point center N; hence the first
group may be derived from the second in precisely the same manner in
which the second has been derived from the first.

FIG. 72

227. Theorem. The four centroids of an orthocentric group of triangles
form an orthocentric group.

The centroids G, Ga, Gb, G, of the four triangles ABC, BCH, CHAC
HAB of an orthocentric group (Fig. 72) correspond to the ortho-
centers H, A, B, C of these triangles in the homothecy (N, - s )
(§ 209); hence the proposition.
228. Theorem. The nine-point circle of 'an orthocentric group of tri-
angles is concentric with the nine-point circle of the orthocentric group
formed by the centroids of the given group of triangles.

Indeed, the nine-point circle (N,) of the orthocentric group GG4G6G,
(§ 227) corresponds to the nine-point circle (N) of the group HABC in
the homothecy (N, --1); hence N is the common center of the two
circles (N) and (N,).
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EXERCISES

1. Show that the Euler lines of the four triangles of an orthocentric group are con-
current.

2. Show that the symmetric of the circumcenter of a triangle with respect to a side
coincides with the symmetric of the vertex opposite the side considered with
respect to the nine-point center of the triangle.

3. Show that the four vertices of an orthocentric group of triangles may be con-
sidered as the centroids of another orthocentric group of triangles, the two
groups having the same nine-point center, this point being the center of simili-
tude of the two groups, the ratio of similitude being -3.

4. Show that the circumcenters and the centroids of an orthocentric group of tri-
angles form two orthocentric groups of points having the same nine-point
center, this point being a homothetic center of the two groups, the homothetic
ratio being 3.

5. Show that the circumcenters of the triangles BBC, HCA, HAB of an ortho-
centric group HABC form a triangle congruent to ABC; the sides of the two
triangles are parallel, and the point H is the circumcenter of the new triangle;
the circumcenter of ABC is the orthocenter of the new triangle.

6. Show that the centroids of the triangles HBC, HCA, HAB of the orthocentric
group HABC form a triangle similar to ABC, and the sides of this new triangle
are parallel to those of ABC; the orthocenter of the new triangle coincides with
the centroid of ABC.

7. Construct a triangle given the feet of its altitudes.
8. Construct a triangle ABC given, in position, the nine-point center and the cir-

cumcenters of the triangles CAH, ABH, where H denotes the orthocenter of
ABC.

9. Show that the algebraic sum of the distances of the points of an orthocentric
group from any line passing through the nine-point center of the group is equal
to zero.

10. The triangle ABC has a right angle at A, and AD is its altitude. The bisectors
of the angles BAD, CAD meet BC in S, S', and the bisectors of the angles ABD,
ACD meet AD in T, T'. If U, V, W are the incenters of the triangles ABC,
ABD, ACD, show that (a) the points A, U, V, W form an orthocentric group;
(b) the circumcenter of A VW lies on AD; (c) the points B, C, V, W are concy-
clic; (d) the points S, S', T, T' form an orthocentric group. State and prove
other properties of the figure.

229. Theorem. The four tritangent centers of a triangle form an ortho-
centric group.

Indeed, the triangle 1J51, formed by the external bisectors of the
given triangle ABC has for its altitudes the internal bisectors of ABC;
hence the incenter I of ABC is the orthocenter of the triangle IJbIc,
which proves the proposition (§ 220).
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230. COROLLARY. A given triangle and its circumcircle are respectively
the orthic triangle and the nine-point circle of the orthocentric group
formed by the tritangent centers of the given triangle.
231. Remark I. From the preceding propositions (§§ 229, 230) it
follows that all the properties of an orthocentric group of points may
be applied to the tritangent centers of a triangle. We thus obtain a
series of propositions of which the following are examples.

(a) The circumradius of a triangle formed by any three tritangent
centers of a given triangle is equal to the circumdiameter of the given tri-
angle (§ 223).

(b) The symmetric of a tritangent center of a given triangle with re-
spect to the circumcenter of the triangle is the circumcenter of the triangle
formed by the three remaining tritangent centers of the given triangle
(§ 224).

(c) The circumcenters of the four triangles determined by the tritangent
centers of a given triangle are the tritangent centers of the symmetric of
the given triangle with respect to the circumcenter of this triangle.

Indeed, the circumcenters of the orthocentric group IIQIbI, (§ 229)
are the symmetrics of these four points with respect to the nine-point
center of the group (§ 224), and this nine-point center coincides with
the circumcenter 0 of the triangle ABC (§ 230).
232. Remark II. The preceding propositions (§ 231) were obtained
by considering the given triangle ABC as the orthic triangle of its tri-
tangent centers, whereas in the study of the orthocenter (§ 175 ff.)
and of the nine-point circle the triangle ABC was considered to be
the basic triangle having its own orthic triangle and its own nine-
point circle. This double role which a triangle may be made to play
in connection with its orthocenter on the one hand, and its tritangent
centers on the other hand, makes it possible to "translate" or "trans-
form" properties established for the orthocenter into properties of the
tritangent centers, and vice versa, without having to prove anew the
properties thus obtained.

For instance, considering the triangle ABC as the basic triangle
we have noticed that the circle having AH for diameter passes through
the points E, F (§ 175) and has its center P on the nine-point circle of
ABC (§ 207). Now the points A, H are tritangent centers of the
orthic triangle DEF of ABC (§§ 192, 193). Hence if we consider ABC
as the orthic triangle of its group of tritangent centers I, Ia, Ib, I,, we
may say that the circle having IIa for diameter will pass through the
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vertices B, C of ABC and have its center on the circumcircle of ABC.
This proposition, however, was proved independently (§ 122).

The circle having Ibl, for diameter corresponds to the circle having
BC for diameter. Both these circles were considered before, inde-
pendently (§§ 122, 175).

The student may find other examples of this kind.
233. Theorem. The area of the triangle formed by the excenters of a
given acute-angled triangle is equal to the product of the perimeter and the
circumradius of the given triangle.
234. Theorem. In an acute-angled triangle the sum of the distances of
the vertices from the corresponding sides of the orthic triangle is equal to
the circumdiameter of the given triangle increased by the distance of the
orthocenter from a side of the orthu triangle.

These are "translations" of properties proved before (§§ 199, 146).
235. Theorem_ The segment joining the orthocenter of a triangle to the
circumcenter of the triangle determined by the excenters of the given tri-
angle is bisected by the iruenter of the medial triangle.

The circumcenter O; (Fig. 73) of the triangle IQIJI, formed by the
excenters of the given triangle ABC is the symmetric of the incenter I
of ABC with respect to the circumcenter 0 of ABC (§ 231 b). If H
and G are the orthocenter and the centroid of ABC, the point G is
also the centroid of the triangle HIO,, for HG = 2GO (§ 201); hence
the line IG passes through the midpoint I' of HO,; moreover, IG -
2GI', i.e., I' corresponds to I in the homothecy (G,'-2). Conse-
quently I' is the point which corresponds in the medial triangle
A'B'C' of ABC to the incenter I of ABC (§ 98), which proves the
proposition.
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236. Theorem. In an acute-angled triangle, the symmetrics of the sides
of the orthic triangle with respect to the corresponding sides of the given
triangle form a new triangle whose incenter coincides with the circum-
center of the given triangle.

Let Oa be the symmetric of the circumcenter 0 of the given triangle
ABC with respect to the side BC. The segments 00a, AH (Fig. 72)
are equal and parallel; hence OA, HOa are equal and parallel.

The radius OA = R is perpendicular to the side d = EF of the
orthic triangle DEF (§ 188); hence HOa is also perpendicular to'd, so
that if HOa meets d in the point L, the segment HL = m is the inradius
of the triangle DEF (§ 192).

Now if d' is the symmetric of d with respect to BC, the distance of
0 from d' is equal to the distance 06L from d, for 0 and Oa are also
symmetric with respect to BC; moreover, the distance OaL = R + m
does not depend upon the choice of the side d of DEF; hence 0 is equi-
distant from the sides d', e', f of the triangle d'e'f' formed by d' and
its two analogues e' and f'.
237. Remark I. We have proved incidentally that the inradius of
the triangle d'e'f' is equal to the sum of the circumradius of the given
triangle and the inradius of the orthic triangle.
238. Remark II. The triangle ABC is the acute-angled triangle of
the orthocentric group of triangles ABCH of which DEF is the com-
mon orthic triangle. The preceding propositions (§§ 236, 237) may
be modified so as to become applicable to the other triangles of the
orthocentric group. The task is left to the reader.
239. Remark III. If in the preceding propositions (§§ 236, 237)
DEF is taken to be the given triangle, the points B, C are two of its
excenters; the line d is tangent to the corresponding excircles (B), (C) ;
hence the symmetric d' of d with respect to the line of centers BC is
also tangent to (B) and (C), i.e., d' is the fourth common tangent
(besides the sides of DEF) of these two circles. The point 0 is the
circumcenter of the triangle determined by the excenters of the given
triangle DEF. Thus the above propositions (§§ 236, 237) may be
"translated" (§ 232) as follows.

The fourth common tangents of the excircles, taken in pairs, of an acute-
angled triangle form a second triangle whose incenter coincides with the
circumcenter of the triangle formed by the excenters of the given triangle,
and whose inradius is equal to the inradius of the given triangle increased
by its circumdiameter.



0.I11] REVIEW EXERCISES

EXERCISES

115

1. A variable triangle ABC has a fixed circumcircle and a fixed incircle. Show that
the triangle A'B'C' having for its vertices the traces A', B', C' of the external
bisectors of ABC on the circumcircle of ABC has a fixed orthocenter, a fixed
centroid, and a fixed nine-point circle.

2. Given, in position, the circumcenter 0 of a triangle ABC, and the circumcenters
of the triangles 7787 , IIJ , construct the triangle ABC.

3. The inscribed circle of a triangle ABC touches the sides BC, CA, AB in D, E,
F; I is the incenter of ABC; L, M, N are the orthocenters of the triangles IBC,
ICA, IAB Prove that (a) DL, EM, FN are equal to the exrad i of ABC;
(b) MN, NL, LM pass through D, E, F, respectively; (c) the triangles LMN,
ABC are equivalent; (d) if the excircles relative to A, B, C touch BC, CA, AB
in D,, E,, F,, the lines MN, NL, LM are at tight angles to AD,, BE,, CF1, re-
spectively; the lines MN, NL, LM meet AD,, BE1, CFI, respectively, on the
inscribed circle.

REVIEW EXERCISES

THE CIRCUMCIRCLE

1. Construct a triangle given m 6 B - C.
2. Construct a triangle given the traces on the clrcumcircle of the altitude, the

median, and the bisector issued from the same vertex.
3. Construct a triangle given the difference of the base angles and the traces, on

the base, of the altitude, the median, and the bisector issued from the opposite
angle.

4. Show that the mediator of the bisector A U of the triangle ABC, the perpendicu-
lar to BC at U, and the circurndiameter of ABC passing through A are con-
current.

5. From the foot U of the bisector A U of the triangle ABC a perpendicular UQ is
drawn to the circumradius AO of ABC meeting AC in P. Prove that AF is
equal to AB.

6. On a given circle to find a point such that the lines joining it to two given points
shall determine on the circle a chord of given length.

7. On a given circle to find a point which, with the points determined on the circle
by the lines joining this point to two given points, shall form a triangle having a
given angle. (Two cases: the given angle is, or is not, equal to the angle formed
by the two sides passing through the two given points.)

8. In a given circle to inscribe a triangle having a given vertical angle, so that its
base shall touch another given circle, and one side shall touch a third given circle.

9. A segment BC of constant length moves so that its ends remain on two fixed
lines AB, AC. Show that the circumcircle of the triangle ABC is tangent to a
fixed circle.

10. Construct a triangle given an angle, the altitude issued from the vertex of this
angle, and the sum of the distances of the foot of this altitude from the other two
sides of the triangle.
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11. Show that the foot of the altitude to the base of a triangle and the projections
of the ends of the base upon the circumdiameter passing through the opposite
vertex of the triangle determine a circle having for center the midpoint of the
base.

MEDIANS

12. The internal bisector of the angle B of the triangle ABC meets the sides B'C',
B'A' of the medial triangle in the points A", C". Prove that AA", CC" are
perpendicular to the bisector, and that B'A" = B'C". Similarly for the ex-
ternal bisector.

13. A', B', C' are the traces of the medians of the triangle ABC on the circumcircle.
If B'C' = a', C'A' = b', A'B' = c', show that, in the usual notation for tri-
angle ABC:

am,,:a' = bmb:b' = cm.:c'.

14. Show that the parallels through the vertices A, B, C of the triangle ABC to the
medians of this triangle issued from the vertices B, C, A, respectively, form a
triangle whose area is three times the area of the given triangle.

15. Construct an isosceles triangle given the median and the altitude to a lateral
side.

16. If R is the circumradius of the triangle ABC, centroid G, r', r", r"' the circum-
radii of the triangles BCG, CAG, ABG, and r the circumradius of the triangle
formed by the medians of ABC, show that 4 Rr2 = 3 r'r"r"'.

17. A variable circle passes through two fixed points A, B. If obi is the second point
of intersection of the circle with a fixed line passing through A, find the locus of
the centroid of the triangle determined by the points A, M and the center of the
circle; find the locus of the midpoint of the radius passing through M.

18. Through the centroid G of the triangle ABC the parallel is drawn to BC meeting
AB, AC in Ab, A,; the parallel to CA meeting BC, BA in B., B0; the parallel to
AB meeting CA, CB in C Cb. Prove that the two triangles AbB,C0, A,B0Cb
are equal.

19. The side BC of the triangle ABC is produced beyond C to the point Al so that
CA1 = and similarly ABI = BC1 = Let A2, B2, C2 be
the midpoints of the segments AA1, BBI, CC,. Show that (a) the three triangles
ABC, A,B,C1, A2B2C2 have the same centroid; (b) the ratio of the areas of the
triangles A2B2C2 and ABC is equal to '*(1 + 3 k + 3 k2). Consider the special
cases when k = 1 and *. Find other properties of the figures mentioned in this
exercise.

TRITANGENT CIRCLES

20. Construct the bisector of an angle whose vertex is inaccessible.
21. If the internal bisector of an angle of a triangle bisects the angle formed by the

other two internal bisectors, show that the triangle is isosceles.
22. Construct a triangle given the area, an angle, and the length of the segment

joining the incenter to the excenter relative to the given angle.
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23. The circle determined by the foot D of the altitude AD and the points 1, 1, of
the triangle ABC meets AD again in L. Show that AL is equal to the circum-
diameter of ABC. State and prove an analogous proposition involving two
excenters.

24. Given the length of the side BC of the variable triangle ABC and the positions
of 1b and 1,, show that (a) the vertex A describes a straight line; (b) the direc-
tions of AB and AC are fixed; (c) the circumradius of ABC is constant; (d) the
circumcenter of ABC describes a circle.

Construct a triangle, given:

25. a, r, b ± c 26. a, h b - c. 27. r, r,,, S.

28. Construct a triangle ABC given the angle A and the inradii of the two triangles
ABI, ACI, where I is the incenter of ABC

29. From the point of intersection of the base of a triangle with the internal bisector
of the vertical angle the tangent is drawn to the incircle_ Prove that the angle
which this tangent makes with the base is equal to the difference of the base
angles.

30. Construct a triangle given the circumradius, the sum of an exradius and the
inradius, and the length of the line of centers of the two corresponding circles
(R, r, + r, II, = 2 d). Hint. The distance of any point K of the circum-
circle (0) from the common chord of (0) and the circle (K, d) is equal to
,}(r, - r) (§ 144 a); hence r and P.

31. The sides of a given triangle intercept the segments n nb, n, on the parallels to
the sides of this triangle through the incenter. Show that:

(n,: a) + (nb: b) + (n,: c) = 2, 4 S = (nh. + nbhs + n,Jk).

State and prove analogous relations regarding the excenters. Hint. n,:a =

(h.-r):h,.
32. Show that the distances of the incenter of a triangle from the medians of the

triangle are equal to:

(b - c)r: 2 m,, (c - a)r:2 mb, (a - b)r:2 ma.

State and prove analogous relations for the excenters.

Construct a triangle, given:

33. r, A, S. Hint. S and r determine p; hence the triangle AI,Z,.
34. a - b, A, r Hint. From the triangle AIZ we have AZ = #(b + c - a),

which, together with a - b, determines the side c.
35. a - c, A, r.
36. a, hb, r. Hint. hb and a determine the angle C; hence the triangle IXC.

37. b+c,A,rb-r,. 38. b+c,B-C,rb+r,. 39. 2p,A,r,-rb.
40. The line joining the foot U of the internal bisector AU of the angle A of the

triangle ABC to the point of contact Y of the incircle with the side CA meets
the perpendicular to CA at A in the point F. Prove that AF = h,.

41. The line joining a vertex of a triangle to the point of contact of the opposite side
with the incircle (excircle relative to this side) divides the triangle into two
triangles whose incircles (excircles) touch the line considered in the same point.
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42. (a) With the usual notations, show that:

AX2 + AXa2 + AXb2 + AXC2 = 3(b2 + c2) - a2.

(b) Show that the sum of the squares of the twelve distances of the vertices of a
triangle from the points of contact of the respectively opposite sides with the
four tritangent circles of the triangle is equal to five times the sum of the squares
of the sides of the triangle.

43. Show that the projection of the vertex B of the triangle ABC upon the internal
bisector of the angle A lies on the line joining the points of contact of the incircle
with the sides BC, AC. State and prove an analogous proposition for the
external bisectors.

44. Show that the midpoint of a side of a triangle, the foot of the altitude on this
side, and the projections of the ends of this side upon the internal bisector of the
opposite angle are four concyclic points. Does the proposition hold for the
external bisector?

ALTITUDES

45. In order to draw a line parallel to a given lines through the inaccessible point of
intersection X of two given lines p, q, draw any perpendicular to the lines, meet-
ing p, q in A, B. If H is the point of intersection of the perpendiculars from A
and B to q and p, respectively, the perpendicular from H to AB is the required
line. Justify this construction.

46. The midpoint A' of the base and the feet E, F of the altitudes to the lateral sides
of a variable triangle are fixed, and A'E = AF. Find the locus of the vertices
and of the orthocenter of the triangle.

47. Show that the symmetric of the orthocenter of a triangle with respect to a
vertex, and the symmetric of that vertex with respect to the midpoint of the
opposite side, are collinear with the circumcenter of the triangle.

48. A triangle varies so as to remain similar to itself. The orthocenter is fixed, and
one vertex lies on a fixed line. Prove that the other two vertices lie on two
fixed straight lines.

49. If through the midpoints of the sides of a triangle having its vertices on the
altitudes of a given triangle, perpendiculars are dropped to the respective sides
of the given triangle, show that the three perpendiculars are concurrent.

50. If D' is the second point of intersection of the altitude ADD' of the triangle ABC
with the circumcircle, center 0, and P is the trace on BC of the perpendicular
from D' to AC, show that the lines AP, AO make equal angles with the bisector
of the angle DA C.

51. The orthocenter, the midpoint of the base, and the direction of the base of a
variable triangle are fixed. Show that its circumcircle passes through two
fixed points. Find the locus of its centroid.

52. Construct a triangle given hb, h,, ta.
53. Show that the triangle formed by the foot of the altitude to the base of a triangle

and the midpoints of the altitudes to the lateral sides is similar to the given
triangle; its circumcircle passes through the orthocenter of the given triangle
and through the midpoint of its base.
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54. With the usual notation, show that the angle formed by the lines C'E, B'F is
equal to 3 A, or its supplement.

55. Show that the synvnetrics P, Q of a given point L with respect to the sides Ox,
Oy of a given angle, and the points P' = (LQ, Ox), Q' = (LP, Oy) he on a circle
passing through 0.

56. The sides of the anticomplementary triangle of the triangle ABC meet the cir-
cumcircle of ABC in the points P, Q, R. Show that the area of the triangle PQR
is equal to four times the area of the orthic triangle of ABC.

57. If B', C' are the projections, upon the sides AB, AC of the triangle ABC, of a
variable point of the circle having BC for diameter, show that the locus of the
orthocenter of the variable triangle AB'C' is a circle having for diameter the
side EF of the orthic triangle relative to the vertex A.

58. Show that (a) if an acute-angled triangle is similar to its orthic triangle, the two
triangles are equilateral; (b) if an obtuse-angled triangle is similar to its orthic
triangle, its angles are (180°:7), (360°:7), (720°:7).

59. Show that in a variable triangle having a fixed base and a fixed circumcirde the
line joining the feet of the altitudes on the two variable sides is of constant length.

60. A is a fixed point on the larger of two concentric circles, and B, C are the points
of intersection of this circle with a vanable tangent BC to the smaller circle.
Prove that the locus of the orthocenter of the variable triangle ABC is a circle.

61. Through the orthocenter of the triangle ABC parallels are drawn to the sides
AB, AC, meeting BC in D, E. The perpendiculars to BC at D, E meet AB,
AC in two points D', E' which are collinear with the diametric opposites of B, C
on the circumcircle of ABC.

62. Let D, D' be the projections of the midpoint A' of BC upon the circumradii OB,
OC of the triangle ABC, and E, E' and F, F' the analogous points relative to the
points B' and C' Prove that:

'VDD': a + EE b + V = (R -I- r): R.

THE NINE-POINT CIRCLE

63. Through the midpoints of the sides of a triangle parallels are drawn to the
external bisectors of the respectively opposite angles. Show that the triangle
thus formed has the same nine-point circle as the given triangle.

64. Construct a triangle given, in position, the orthocenter, a point on the nine-point
Circle, the midpoint of the base, and the indefinite line containing the base.

65. The line joining the orthocenter of a triangle ABC to the midpoint of the side
BC meets the circumcircle of ABC in the points A,, A2. Prove that the ortho-
centers of the three triangles ABC, A1BC, A2BC are the vertices of a right
triangle.

66. The base BC and the opposite angle A of a variable triangle ABC are fixed.
Show that (a) the line B'Q has a fixed direction; (b) the nine-point circle is
tangent to a fixed circle.

67. Show that the foot of the altitude of a triangle on a side, the midpoint of the
segment of the circumdiameter between this side and the opposite vertex, and
the nine-point center are collinear.
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68. If A, B, C are the centers of three equal circles (A), (B), (C) having a point L
in common, and D, E, F are the other points which the circles (B) and (C), (C)
and (A), (A) and (B) have in common, show that the circle DEF is equal to the
given circles, and that the center of this circle coincides with the orthocenter of
the triangle ABC.

69. Show that the parallels to the internal bisectors of a triangle drawn through
the respective Euler points are concurrent; the line joining their common point
to the nine-point center of the given triangle is parallel to the line joining the
circumcenter of the given triangle to its incenter. State and prove analogous
propositions, using both internal and external bisectors.

70. Show that the nine-point center of the triangle IBC lies on the internal bisector
of the angle A' of the complementary triangle A'B'C' of the given triangle ABC.
State and prove analogous propositions for the triangles I,BC, IbBC, I, BC.

71. If 0, H are the circumcenter and the orthocenter of the triangle ABC, show that
the nine-point circles of the three triangles OHA, OHB, OHC have two points in
common.

72. If A', B', C' are the midpoints of the sides BC, CA, AB of a triangle ABC,
respectively, show that the nine-point centers of the triangles AB'C', BC'A',
CA'B' form a triangle homothetic with ABC in the ratio 1:2. Find other
properties of the figure.

MISCELLANEOUS EXERCISES

73. Show that the Euler lines of the three triangles cut off from a given triangle by
the sides of its orthic triangle have a point in common, on the nine-point circle
of the given triangle.

74. If a triangle (S) is inscribed in a triangle (T) and the two triangles are similar,
show that the orthocenter of (S) coincides with the circumcenter of (T).

75. If the circle (BC) having for diameter the side BC of the triangle ABC meets
CA, AB in E, F, show that the double chord determined by the two circles (BC)
and (AEF) on any line through E (or F) has its midpoint on the nine-point
circle of ABC.

76. Show that the symmetrics of the foot of the altitude to the base of a triangle
with respect to the other two sides lie on the side of the orthic triangle relative
to the base.

77. In the plane of a triangle to find two directions such that the three pairs of lines
having these directions and passing through the vertices of the triangle shall
meet the opposite sides in six concyclic points.

78. Show that the midpoint of an altitude of a triangle, the point of contact of the
corresponding side with the excircle relative to that side, and the incenter of the
triangle are collinear.

79. Show that the line joining the circumcenter 0 of a triangle to its incenter I
passes through the orthocenter H' of the triangle formed by the points of con-
tact of the sides of the triangle with the incircle, and that, moreover,
H'I:07 = r: R. Is the proposition valid for the excenters?

80. If X' is the symmetric, with respect to the internal bisector of the angle A, of
the point of contact of the side BC of the triangle ABC with the incircle, and A'
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is the midpoint of BC, show that the line A'X' and its two analogues B'Y', C'Z'
have a point in common. Is the proposition valid for an excircle?

81. A line AD through the vertex A meets the circumcircle of the triangle ABC in
D. If U, V are the orthocenters of the triangles ABD, ACD, respectively,
prove that UV is equal and parallel to BC.

82. The internal bisectors of the angles B, C of the triangle ABC meet the line AX.,
joining A to the point of contact of BC with the excircle relative to this side in
the points L, M. Prove that AL: AM = AB: AC.

83. Given the length of the internal bisector of an angle of a triangle and the direc-
tions of all three bisectors, to construct the triangle. Consider analogous prob-
lems involving the external bisectors, or both internal and external bisectors

84. Show that the product of the distances of the incenter of a triangle from the
three vertices of the triangle is equal to 4 Rr2. State and prove analogous
formulas for the excenters.

85. AA', BB', CC' are the medians of a triangle ABC of which G and H are the
centroid and the orthocenter. Upon A'A a point U is taken so that

A'B2 = A'C2. Similarly for the points V and W with regard to
BB' and CC'. Show that the triangle UVW has its sides proportional to the
medians of ABC, and that GH is a diameter of its circumcircle_

86. A parallel to the median AA' of the triangle ABC meets BC, CA, AB in the
points H, N, D. Prove that the symmetries of H with respect to the midpoints
of NC, BD are symmetrical with respect to the vertex A.

87. A variable transversal meets the sides AB, AC of the triangle ABC in the points
P,, Q,. Let O, be the circumcenter of AP,Q1, and 02 the circumcenter of the
triangle determined by A and the isotomics of P,, Q. Show that the line 0102
passes through a fixed point and that the second point common to the two circles
considered lies on a fixed circle.

88. If the lines AX, B Y, CZ joining the vertices of a triangle ABC to the points of
contact X, Y, Z of the sides BC, CA, AB with the incircle meet that circle again
in the points X', Y', Z', show that:

4rS,
where r, S are the inradius and the area of ABC. State and prove analogous
relations for the excircles.

89. The perpendiculars DP, DQ dropped from the foot D of the altitude AD of the
triangle ABC upon the sides AB, A C meet the perpendiculars BP, CQ erected
to BC at B, C in the points P, Q respectively Prove that the line PQ passes
through the orthocenter H of ABC.

90. Through the vertices of a given triangle are drawn the symmetries of the
corresponding sides of the anticomplementary triangle with respect to a given
direction. Show that the three lines thus obtained meet in a point on the
circumcircle of the triangle. State this proposition with reference to the
medial triangle and the nine-point circle.

91. The altitudes AHD, BEE, CHF of the triangle ABC are produced beyond D,
E, F to the points P, Q, R by the lengths AH, BE, CH, respectively. The
parallels through P, Q, R to the sides BC, CA, AB form a triangle A1B,C,.
Show that (a) H is the centroid of the triangle A1B1C,; (b) the homothetic center
of the triangles ABC, A,B,C, is the circumcenter of each of these triangles.
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92. The points H, 0 are the orthocenter and the circumcenter of the triangle ABC,
and P, P' are two points symmetrical with respect to the mediator of BC. The
perpendicular from P to BC meets BC in P1 and OP' in P"; M is the midpoint
of HP. Prove that (a) 2 MP, = AP"; (b) the symmetric of P, with respect
to the midpoint of OM lies on AP'.

93. The side AB of a parallelogram ABCD is produced to E so that BE = AD.
The perpendicular to ABE at E meets the perpendicular from C to the diagonal
BD in F. Show that AF bisects the angle A.

94. If AD, BE are altitudes of the triangle ABC, and BL the perpendicular from B
to DF, show that if LB2 = LD LE, the triangle is isosceles.

95. The point S is the homothetic center of two triangles ABC, A'B'C', and A",
B", C" are the symmetrics of A', B', C' with respect to the mediators of BC,
CA, AB. The lines AA", BB", CC" meet the parallels through S to BC, CA, AB
in A,, B,, C1. Show that the circle A1B1C1 passes through S and has its center
on the Euler line of ABC.

96. If h, m, t are the altitude, the median, and the internal bisector issued from
the same vertex of a triangle whose circumradius is R. show that:

4 R2h2(t2 - h2) = t4(m2 - h2).

97. The perpendiculars BB', CC' from the vertices B, C of the triangle ABC upon
an arbitrary diameter d of the incircle (I) of ABC meet the lines XY, YZ joining
the points of contact X, Y, Z of (I) with BC, CA, AB in the points B", C".
Prove that (a) BB':BB" = CC': CC"; (b) the lines d, B"C" meet on BC;
(c) the line B"C" passes through the excenter of ABC relative to the side BC.

98. Construct a triangle given the base, the vertical angle, and the sum of the
squares of the lines drawn from the vertical angle to bisect the segments of the
base made by the foot of the altitude from the same vertex.

99. Construct a triangle given a side and the altitude to the base, so that the
diameter of the incircle shall be equal to the side of the square inscribed in the
triangle and having two of the vertices on the base of the triangle.

100. Construct a triangle given, in position, the feet of the altitude and of the
median to the base, and the incenter (D, A', I).

101. Construct a triangle given the perimeter, the vertical angle, and the length of
the line drawn from the vertical angle to meet the base and divide it in a given
ratio.

102. Construct a triangle given the vertical angle, an adjacent side, and the ratio
of the area of the required triangle to the area of the triangle formed by the
bisectors of the given angle and the opposite side of the required triangle.

103. Construct a triangle ABC of which AD, BE, CF are the unknown altitudes
having given the three products BC- CD, CA AE, AB-BF.

104. Construct a triangle given h,,, ta, b + c.
105. Let A', B', C' and A", B", C" be the traces of the internal and the external

bisectors of the triangle ABC on its circumcircle. Construct ABC given the
segments (a) A"B, B"C, C"A; (b) A"B, B'C, C'A.

106. In a given circle to inscribe a right triangle of given inradius, so that one side
of the right angle shall pass through a given point.
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107. Construct a triangle given three of the six points in which the three internal
bisectors meet the incircie.

108. Construct a triangle ABC given the altitude AD and the ratios AE:EC,
AF: FB, where E, F are the feet of the other two altitudes.

109. Construct a triangle given two Euler points and the centroid.
110. Construct a triangle given the base, the corresponding median, and the differ-

ence of the other two sides.
111. One vertex of a variable triangle inscribed in a fixed circle is fixed, and the

opposite side passes through a fixed point. (a) Show that the orthocenter
describes a circle. (b) Show that the nine-point circle is tangent to two fixed
concentric circles.

112. The tangent to a circle (0) at a variable point M meets the fixed diameter AA'
in the point T. Show that the locus of the incenter of the triangle OMT con-
sists of four straight lines. Find the loci of the excenters.

113. The circumcircle and the directions of two sides of a variable triangle are fixed.
Find the locus of its tritangent centers.

114. Show that the second of the common internal tangents to the incircles of the
two triangles into which a given triangle is divided by a variable line through
a vertex passes through the point of contact of the incircle of the given triangle
relative to the vertex considered. State and prove an analogous property for
the encircles relative to the vertex considered.



iv

THE QUADRILATERAL

A. THE GENERAL QUADRILATERAL

240. Theorem. The midpoints of the sides of a quadrilateral are the
vertices of a parallelogram.

The segment PS joining the midpoints P, S of the two sides AB, AD
of the given quadrilateral ABCD (Fig. 74) and the segment QR joining

the midpoints Q, R of the sides CB, CD are both parallel to, and equal
to one-half of, the diagonal BD of the quadrilateral; hence the propo-
sition.
241. COROLLARY. (a) The perimeter of the parallelogram PQRS is
equal to the sum of the diagonals of the given quadrilateral (Fig. 74).

(b) The area of the parallelogram is equal to one-half the area of the
given quadrilateral.

The proof is left to the student.
124
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When will the parallelogram become a rectangle? A rhombus?
A square?
242. Theorem. The lines joining the midpoints of the two pairs of
opposite sides of a quadrilateral and the line joining the midpoints of the
diagonals are concurrent and are bisected by their common point.

The lines PR, QS (Fig. 74) bisect each other, say, in J, for they are
the diagonals of the parallelogram PQRS (§ 240).

If U, V are the midpoints of the diagonals AC, BD, then PURV is a
parallelogram, for both PV and RU are parallel to, and equal to one-
half of, AD; hence the diagonal UV of the parallelogram PURV is
bisected by the midpoint J of the diagonal PR.
243. Definition. The point J (§ 242) will be referred to as the centroid
of the quadrilateral ABCD.
244. Theorem. The four lines obtained by joining each vertex of a
quadrilateral to the centroid of the triangle determined by the remaining
three vertices are concurrent.

Let ABCD be the given quadrilateral (Fig. 75) and let A', B', C', D'
be the centroids of the triangles BCD, CDA, DAB, ABC. We have
(§ 88):

PC': PD = PD': PC = 1:3;

hence C'D' is parallel to CD, and C'D': CD = 1: 3.
Thus the sides of the quadrilateral A'B,'C'D' are parallel to the re-

spective sides of ABCD and proportional to these sides; hence the two
quadrilaterals are homothetic, and the lines AA', BB', CC', DD' meet
in the homothetic center of the two figures.
245. Remark. (a) The homothetic center of the two quadrilaterals
(§ 244) coincides with the centroid J of ABCD.
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The median QS of the triangle QAD (Fig. 75) bisects the segment
D'A' parallel to the base DA, in S'; hence S, S' are corresponding points
in the two homothetic figures, and the line SS'Q passes through the
homothetic center of the two quadrilaterals. Similarly for the line
PR. Hence the proposition.

(b) The senses of the two lines A'D', AD are opposite, as is readily
seen in the figure; hence the two quadrilaterals are inversely homo-
thetic, so that corresponding points, like A and A', lie on opposite sides
of the point J, and JA : JA' = - 3: 1.
246. Theorem. The sum of the squares of the sides of a quadrilateral is
equal to the sum of the squares of the diagonals increased by four times the
square of the segment joining the midpoints of the diagonals.

In the triangles ABD, CBD, VAC (Fig. 74) we have (§ 106):

2AV2=AB2+AD2-a BD2,
2 CV2 = BC2 + CD2 - a BD2,
2 UV2 = AV2 + CV2 - z AC2.

Multiplying the last relation by two and adding to the sum of the first
two we obtain, after simplification:

4 UV2 = AB2 + AD2 + BC' + CD2 - AC2 - BD2.

247. COROLLARY. The sum of the squares of the sides of a parallelogram
is equal to the sum of the squares of the diagonals.
248. Theorem. The sum of the squares of the diagonals of a quadrilateral
is equal to twice the sum of the squares of the two lines joining the mid-
points of the two pairs of opposite sides of the quadrilateral.

The lines PR, QS (Fig. 74) are the diagonals of the parallelogram
PQRS (§ 240), whose sides are equal to half the respective diagonals
of ABCD; hence the proposition (§ 247).
249. Problem. Construct a quadrilateral given its four sides and the
line joining the midpoints of a pair of opposite sides.

The sides of the quadrilateral ABCD (Fig. 74) and the line PR being
given, the parallelogram PURV may be constructed, for we know its
diagonal PR and its sides:

PU = RV = ' BC, PV=RU= 2 AD.
We thus locate the diagonal UV of the parallelogram QUSV, and
QUSV may now be constructed, in a similar manner.

The midpoints P, Q, R, S being located, the triangles SPA, PQB,.. .
may now be completed; hence the quadrilateral ABCD.
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250. Problem. Construct a quadrilateral given two opposite angles, the
diagonals, and the angle between the diagonals.

On the given diagonal AC, of the required quadrilateral ABCD, as
chord construct the two arcs at the points of which AC subtends the
given angles B, D. The second diagonal is known, both in length and
direction, and the problem is reduced to placing this diagonal so that
its ends shall lie on the two circles just constructed; hence the problem
is solved (§ 8).
251. Theorem. The internal bisectors of the angles of a quadrilateral
form a cyclic quadrilateral.

Let the internal bisectors of the angles A, D of the quadrilateral
ABCD meet in P, and those of the angles B, C in Q. We have:

L APD = 180° - z (A +D), LBQC = 180° -z (B + C) ;

hence:

L A PD + BQC = 360° - 2 (A + B + C + D) = 3600 - 1800 = 180°.

As an exercise, state and prove an analogous proposition for the
external bisectors.

EXERCISES

1. Show that the internal bisectors of two consecutive angles of a quadrilateral form
an angle equal to half the sum of the remaining two angles. State and prove an
analogous proposition for the external bisectors.

2. ABCD is a quadrilateral, P, Q, R, S the midpoints of its sides taken in order, U,
V the midpoints of the diagonals, 0 any point; OP, OQ, OR, OS, OU, OV are
divided in the same ratio in P', Q', R', S', U', V'. Prove that P'R', Q'S', U'V'
are concurrent.

3. Given the quadrilateral ABCD, show that the locus of the point M such that:

area MAB + area MCD = area MAC + area MBD

is the line joining the midpoints of the diagonals.
4. Construct a quadrilateral given the length of each of its sides and the length of

the segment joining the midpoints of the diagonals.

B. THE CYCLIC QUADRILATERAL

252. Definition. A quadrilateral whose vertices lie on the same
circle is said to be inscriptible or cyclic.
253. Theorem. In a cyclic quadrilateral (a) the opposite angles are
supplementary; (b) the angle between a side and a diagonal is equal to
the angle between the opposite side and the other diagonal. Conversely.
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254. Theorem. The line joining the midpoints of the two arcs which
two opposite sides of a cyclic quadrilateral subtend on the circumcircle
is perpendicular to the line joining the midpoints of the arcs subtended by
the other two sides.

Let E, F, G, H be the midpoints of the arcs subtended by the sides
AB, BC, CD, DA of the cyclic quadrilateral ABCD, M the point of
intersection of the diagonals AC, BD.

The midpoint E is taken on the opposite side of the chord AB from
the vertices C, D of ABCD. Similarly for the points F, G, H.

The angle AMD is measured by half the sum of the arcs AD, BC.
Now the line HF meets the diagonal BD in a point, S, inside the circle
(0); hence the angle HSD is measured by half the sum of the arcs HD,
BF, and is therefore equal to half of the angle AMD, i.e., the line FH
is parallel to the internal bisector of the angle AMD.

Similarly the line EG is parallel to the internal bisector of the angle
AMB. Hence the proposition.
255. Ptolemy's Theorem. In a cyclic quadrilateral the product of the
diagonals is equal to the sum of the products of the opposite sides.
Conversely.

Consider a quadrilateral ABCD (Fig. 76 a and b) in which AB = a,
BC = b, CD = c, DA = d, AC = x, BD = y, and let the line m be

FIG. 76a FIG. 76b

the symmetric of the side AD with respect to the bisector of the angle
BAC. The line m contains one and only one point 0 such that angle
AOB = ACD. From the triangles ACD, AOB we have angle ABO =
ADC. Thus, if ABCD is cyclic, the point 0 lies on the side BC, and
only in that case, for, conversely, if the point 0 lies on BC, it is readily
seen that ABCD is cyclic (Fig. 76 a).
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The triangles AOB, ACD are similar, whether the point 0 lies on
BC or not; hence:

(1) AO: AC = AB: AD = OB:CD.

Moreover, the triangles OAC, BAD are similar, for angle OAC =
BAD, and the including sides are proportional, by (1); hence:

(2) OC:BD = AC: AD.

If ABCD is cyclic, we have (Fig. 76 a):

.OC=OB+BC.
Now BC = b, and from (1) and (2) we have:

OB=ac:d, OC=xy:d;
hence, substituting and simplifying:

(3) xy = ac + bd,

which proves the direct proposition.
If ABCD is not cyclic, we have (Fig. 76 b):

OC<OB+BC,
or, making the same substitutions as above:

xy < ac + bd;

i.e., in a (noncyclic) quadrilateral the product of the diagonals is
smaller than the sum of the products of the opposite sides.

This proposition together with the proved direct theorem lead to
the announced converse: If the product of the diagonals of a quadri-
lateral is equal to the sum of the products of the opposite sides, the quadri-
lateral is cyclic.
256. Problem. Construct a cyclic quadrilateral given its sides a, b, c, d.

The proof of the preceding theorem suggests the following construc-
tion.

Assuming that b, d are a pair of opposite sides, on a straight line lay
off CB = b, and BO = ac: d (Fig. 76 a). One locus for the vertex A
is the circle (B, a). From (1) (§ 255) we have AO = ax:d; hence:

AO: AC = (ax:d):x = a: d,

which gives an Apollonian circle as a second locus for A. The tri-
angle ACD is now readily completed, and ABCD is the required
quadrilateral. The point D is to be taken so that B, D shall lie on
opposite sides of AC.
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The two circles determining the point A intersect in two points,
symmetric with respect to BC. Either of these points may be taken,
but the two solutions will be symmetric with respect to BC, so that
the problem has essentially only one solution.

A
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257. Remark. (a) We assumed that the side d is the opposite to
the side b. We obtain two other quadrilaterals, if the sides a, c, are,
in turn, taken to be the opposite sides of b. However, if the first
quadrilateral ABCD is constructed, the quadrilaterals A'BCD and
ABCD' corresponding to the other two cases are readily obtained
(Fig. 77), and these quadrilaterals solve the problem, for the solution
is in each case unique (§ 256).

'(b) The arcs BAD', CDA' being equal, by construction (Fig. 77),
we have:

BD'=CA'=z.

Thus the three quadrilaterals ABCD, ABCD', A'BCD have only three
different diagonals x, y, z.

Applying Ptolemy's theorem to the quadrilaterals ABCD', A'BCD,
we have:

hence:

xz = ad + bc, yz = ab + cd;

x: y = (ad + bc) : (ab + cd).

The student may give a verbal expression for this formula.
This formula combined with (3) (§ 255) readily yields a formula for

x and one for y.
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(c) The triangle BCD (Fig. 77) is the common part of the quadri-
laterals ABCD, A'BCD, and the sides of the two triangles ABD, A'BD
are respectively equal; hence the two quadrilaterals are equivalent.

Similarly for the quadrilaterals DABC, D'ABC. Thus the three
quadrilaterals ABCD, A'BCD, ABCD' are equivalent.

(d) Let R, S be the common circumradius and the common area
of the three quadrilaterals ABCD, A'BCD, ABCD', and we have
(§ 255):

hence:

xy = ac + bd;

xyz = acz + bdz = 4 R (area A'CD + area A'CB) (§ 86),
or:

xyz = 4 RS.

258. Theorem. The perpendiculars from the midpoints of the sides of
a cyclic quadrilateral to the respectively opposite sides are concurrent.

Let 0, J be the circumcenter and the centroid (§ 243) of the cyclic
quadrilateral ABCD, and P, Q, R, S the midpoints of the sides
AB, BC, CD, DA (Fig. 78).

Let the perpendicular SS' from S upon BC meet OJ in M. The
lines SS', OQ are parallel, and J bisects the line QS; hence J bisects OM.

FIG. 78

Thus SS' passes through the symmetric M of the circumcenter 0 with
respect to the centroid J of the quadrilateral, i.e., through a point
which does not depend upon the choice of the perpendicular we started
with. Hence the proposition.
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259. Remark. The perpendicular from the midpoint of each diagonal
upon the other diagonal also passes through M, for the line joining their
midpoints is also bisected by the centroid J (§ 242).
260. Definition. The symmetric of the circumcenter of a cyclic
quadrilateral with respect to the centroid is called the anticenter of the
cyclic quadrilateral.
261. Theorem. The four lines obtained by joining each vertex of a cyclic
quadrilateral to the orthocenter of the triangle formed by the remaining
three vertices bisect each other.

Let Hd, H. be the orthocenters of the triangles ABC, DBC (Fig. 78).
We have (§ 195) :

AHd = 2 OQ = DHa,

and the lines AHa, DHa are both perpendicular to BC; hence ADHaHd
is a parallelogram, and the diagonals AHa, DHd bisect each other.

Similarly DHd is bisected by the analogous lines BHb, CHI, and,
in turn, bisects each of these lines. Hence the proposition.

The common point X of these four lines is thus a center of symmetry
of the two quadrilaterals ABCD, HaHbHcHd.
262. Remark. The point X (§ 261) coincides with the anticenter M
of the quadrilateral.

Indeed, in the triangle DAHd the line SX is parallel to AHd and
therefore perpendicular to BC; hence SX passes through M (§ 258).
Similarly for PX, QX, RX. Hence the proposition.

The point M is thus the center of symmetry of the two quadrilaterals
ABCD, HaHbHcHd.
263. Theorem. The nine-point circles of the four triangles determined
by the four vertices of a cyclic quadrilateral pass through the anticenter
of the quadrilateral.

The point D lies on the circumcircle of the triangle ABC (Fig. 78);
hence the midpoint M of the line joining D to the orthocenter Hd of
ABC (§ 261) lies on the nine-point circle of ABC (§ 210). Similarly
for the other triangles of the group.
264. Theorem. The sum of the squares of the distances of the anticenter
of a cyclic quadrilateral from the four vertices is equal to the square of the
circumdiameter of the quadrilateral.

In the triangle MAD (Fig. 78) we have (§ 106):

(1) MA2+MD2= 2MS2+ z AD2.
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Now MS = OQ, as opposite sides of a parallelogram; hence (1) be-
comes, considering the right triangle OQB and denoting by R the cir-
cumradius of ABCD:

MA2 + MD2 = 2R2 + 2 AD2 - 1 BC2.

The sides A B, BC, CD of A BCD give rise to three analogous rela-
tions, and adding the four relations we readily obtain the stated result.
265. Theorem. The incenters of the four triangles determined by the
vertices of a cyclic quadrilateral form a rectangle.

Let E, F, G, H be the midpoints of the arcs subtended by the sides
AB, BC, CD, DA of the cyclic quadrilateral ABCD on the circum-
circle (Fig. 79).

The incenters D', A' of the triangles ABC, DBC lie on the bisectors
AF, DF of the angles BAC, BDC and on the circle (F, FB) (§§ 116,
122); thus the triangle FA'D' is isosceles, and the base A'D' is per-
pendicular to the bisector FH of the angle F. Similarly the line FH is
perpendicular to the line B'C' joining the incenters B', C' of the tri-
angles CAD, BAD.

Similarly, the line EG is perpendicular to the lines A'B', C'D'.
Now the lines FH, EG are perpendicular (§ 254); hence the proposition.
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266. Theorem. If of the four triangles determined by the vertices of a
cyclic quadrilateral three triangles are considered having a common vertex,
the three excenters relative to this vertex in the three triangles are three
vertices of a rectangle, the fourth vertex of which is the incenter of the
fourth triangle.

Let Da, Db, D,; Ab, A,, Ad; Ba, B,, Ba; Ca, Cb, Ca be the excenters of
the triangles ABC, BCD, CDA, DAB, respectively, the excenter Ab
being relative to the vertex B in the triangle BCD, etc. (Fig. 79).

The two pairs of points D', Da; A', Ad are diametrically opposite on
the circle (F, FB) (§ 122); hence D'A'DaAa is a rectangle, and there-
fore Aa, Da lie on the lines C'D', B'A', respectively (§ 265). Consider-
ing the circle (H, HA) we may show that the points B,,, Cb lie on the
lines D'C', A'B', respectively. We have thus the two sets of four
collinear points: A'B'CbDa, C'D'ASB,.

Considering the circles (E, EA), (G, GC) we obtain two additional
points on each of the lines A'D', B'C'.

Analogous considerations yield the stated result.
267. Theorem. The sixteen tritangent centers of the four triangles de-
termined by the vertices of a cyclic quadrilateral lie by fours on eight lines.
These eight lines consist of two groups of four parallel lines, and the lines
of one group are perpendicular to those of the other group.

This summarizes the preceding propositions (§§ 265, 266).

EXERCISES

1. Show that in a cyclic quadrilateral the distances of the point of intersection of
the diagonals from two opposite sides are proportional to these sides.

2. In the cyclic quadrilateral ABCD the perpendicular to AB at A meets CD in A',
and the perpendicular to CD at C meets AB in C. Show that the line AV is
parallel to the diagonal BD.

3. In a given circle to inscribe a quadrilateral given the diagonals and the angle
between them.

4. Show that the perpendicular from the point of intersection of two opposite sides,
produced, of a cyclic quadrilateral upon the line joining the midpoints of the two
sides considered passes through the anticenter of the quadrilateral.

5. Show that the anticenter of a cyclic quadrilateral is the orthocenter of the
triangle having for vertices the midpoints of the diagonals and the point of inter-
section of those two lines.

6. Show that the anticenter of a cyclic quadrilateral is collinear with the two sym-
metrics of the circumcenter of the quadrilateral with respect to a pair of opposite
sides.



Ch. IV, § 267-270] OTHER QUADRILATERALS 135

7. If Ha, Hb, H0, Ha are the orthocenters of the four triangles determined by the
vertices of the cyclic quadrilateral ABCD, show that the vertices of ABCD are
the orthocenters of the four triangles determined by the points Ha, Hb, H., Ha.

8. Show that the product of the distances of two opposite sides of a cyclic quadri-
lateral from a point on the circumcircle is equal to the product of the distances
of the other two sides from the same point.

9. Show that the four lines obtained by joining each vertex of a cyclic quadrilateral
to the nine-point center of the triangle formed by the remaining three vertices,
are concurrent.

10. Show that the four nine-point centers of the four triangles determined by the
vertices of a cyclic quadrilateral form a cyclic quadrilateral.

11. Three vertices of a variable cyclic quadrilateral are fixed. Find the locus of
(a) its centroid; (b) its anticenter.

12. If a, b, c, d are the sides and S the area of a cyclic quadrilateral, show that:

S2=
(p-a)(p-b)(p-c)(p-d),

where p = *(a + b + c + d) [Formula of Brahmagupta].

C. OTHER QUADRILATERALS

268. Definition. A quadrilateral is said to be circumscriptible if its
sides are tangent to the same circle.
269. Theorem. In a circumscriptible quadrilateral the sums of the
two pairs of opposite sides are equal.

If p, q, r, s are the lengths of the tangents from the vertices of the
given quadrilateral to its inscribed circle, it is readily seen that the
sum of two opposite sides is equal to p + q + r + s.
270. Converse Theorem. If the sum of two opposite sides of a quadri-
lateral is equal to the sum of the remaining two sides, the quadrilateral is
circumscriptible.

Suppose that in the given quadrilateral ABCD (Fig. 80) we have:

(1) AB+CD=AD+BC.
If two adjacent sides of ABCD are equal, the remaining two sides

are also equal, by (1), and the proof becomes trivial.
Assuming that AB is greater than BC, we have, by (1),

(2) AB-BC=AD-CD.
Mark the point P between A, B and the point Q between A, D so

that we shall have:
BP=BC, DQ=DC,

and therefore, by (2):
AP = AQ.
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We have thus three isosceles triangles APQ, BCP, DCQ; hence the
internal bisectors of the angles A, B, D are the mediators of the sides
of the triangle PQC, and therefore meet in the circumcenter 0 of PQC.

A
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The point 0 common to the internal bisectors of the angles A, B, D
of the quadrilateral ABCD necessarily lies inside of ABCD and is,
furthermore, equidistant from the sides of ABCD; hence the proposi-
tion.
271. Definition. A quadrilateral is said to be orthodiagonal if its
diagonals are perpendicular to each other.
272. Theorem. In an orthodiagonal quadrilateral the sum of the
squares of two opposite sides is equal to the sum of the squares of the
remaining two sides, and conversely.

If the diagonals AC, BD of the quadrilateral A BCD are rectangular,
we have, denoting by 0 their point of intersection:

AB2 + CD2 = A02 + BO' + CO2 + DO2,
AD2 + BC2 = A02 + D02 + BO2 + C02;

hence:

(1) AB2 + CD' = AD2 + BC2.

Conversely, if (1) holds, we have:

AB2 - AD2 = BC2 - CD2;

hence the line joining the points A and C is perpendicular to BD
(§ 11, locus 12).
273. Theorem. In an orthodiagonal quadrilateral the two lines joining
the midpoints of the pairs of opposite sides are equal.



Ch. IV, § 273-277] OTHER QUADRILATERALS 137

Indeed, the parallelogram determined by the midpoints of the sides
of the quadrilateral (§ 240) is in the present case a rectangle, and the
two lines considered are the diagonals of this rectangle.
274. COROLLARY. In an orthodiagonal quadrilateral the midpoints of
the sides lie on a circle having for center the centroid of the quadrilateral
(§§ 242, 243).
275. Theorem. If an orthodiagonal quadrilateral is cyclic, the anti-
center coincides with the point of intersection of its diagonals.

If 0, J are the circumcenter and the centroid of the cyclic quadri-
lateral ABCD (Fig. 81), and the diagonals AC, BD are orthogonal,
the orthocenter Hd of the triangle ABC lies on the perpendicular BD
to the base AC; now the line DHd passes through the anticenter M of
the quadrilateral (§§ 261, 262); hence M lies on the diagonal BHdD.

Similarly M lies on the diagonal AC; hence the proposition.
276. Theorem of Brahmagupta (c. 628). In a quadrilateral which is
both orthodiagonal and cyclic the perpendicular from the point of inter-
section of the diagonals to a side bisects the side opposite.

Indeed, the perpendicularRP' from the midpoint R of the side CD (Fig.
81) to the opposite side AB passes through the point M (§§ 258, 275).
277. COROLLARY. In a cyclic orthodiagonal quadrilateral the projections
of the point of intersection of the diagonals upon the four sides lie on the
circle passing through the midpoints of the sides.

A

Indeed, if P (Fig. 81) is the midpoint of the side AB, the diameter
PR of the circle considered (§ 273) subtends a right angle at the point
P'. Similarly for the other projections of M.
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278. Theorem. In a cyclic orthodiagonal quadrilateral the distance
of a side from the circumcenter of the quadrilateral is equal to half
the opposite side.

The line OM (Fig. 81) bisects, in the centroid J, the line PR joining
the midpoints P, R of the opposite sides AB, CD (§ 242); hence PMRO
is a parallelogram, and OP = MR. Now OP is perpendicular to the
chord AB, and the median MR of the right triangle CMD is equal to
half the hypotenuse CD; hence the proposition.
279. Theorem. If a quadrilateral is both cyclic and orthodiagonal, the
sum of the squares of two opposite sides is equal to the square of the cir-
cumdiameter of the quadrilateral.

Indeed, in the right triangle AOP (Fig. 81) we have:

0A2 = AP2 + OP2 = 4 AB2 + 4 CD2 (§ 278).

280. COROLLARY I. In the parallelogram PMRO (Fig. 81) we have
(§ 245):

PR2 + OM2 = OP2 + PM2 + MR2 + R02 = 2 (OP2 + OR2) ;

hence, by the preceding proposition (§ 279):

PR2 = z (AB2 + CD2) - OM2 = 2 OA2 - OM22.

This formula gives the diameter of the circle considered before
(§ 277) and shows that this circle depends only upon the radius of the
given circle and the point of intersection of the diagonals.
281. COROLLARY II. In a quadrilateral which is both cyclic and ortho-
diagonal the sum of the squares of the sides is equal to eight times the
square of the circumradius.

EXERCISES

1. Show that the line joining the midpoints of the diagonals of a cyclic orthodiagonal
quadrilateral is equal to the distance of the point of intersection of the diagonals
from the circumcenter of the quadrilateral.

2. If the diagonals of a cyclic quadrilateral ABCD are orthogonal, and E is the
diametric opposite of D on its circumcircle, show that AE = CB.

SUPPLEMENTARY EXERCISES

1. Construct a quadrilateral given the four sides and the sum of two opposite angles.
2. Construct a quadrilateral given, in position, the projections of the point of inter-

section of the diagonals upon the four sides.
3. About a given quadrilateral circumscribe a rhombus similar to a given rhombus.
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4. Construct a rectangle similar to a given rectangle so that its sides shall be tangent
respectively to four given circles.

5. A variable triangle ABC has a fixed base BC and a constant opposite angle. On
the internal bisector of that angle A a segment AL = 4(AB + AC) is laid off.
Show that the locus of L is a circle.

6. Show that the square of the area of a bicentric quadrilateral (that is, one that is
both cyclic and circumscriptible) is equal to the product of its four sides.



V

THE SIMSON LINE

282. Theorem. (a) The feet of the three perpendiculars to the sides of a
triangle from a point of its circumcircle are collinear.

(b) Conversely. If the feet of the perpendiculars from a point to the
sides of a triangle are collinear, the point lies on the circumcircle of the
triangle.

Let P be a point inside the angle ABC of the triangle ABC and let
L, M, N be the projections of P upon the sides BC, CA, AB (Fig. 82).
The circles (PA), (PC) described on PA, PC as diameters pass
through the pairs of points M and N, M and L, respectively, and we
have:

(1) LAPN =AMN, LCPL =CML, LB + NPL = 180°.

Now suppose that P lies on the circle ABC. The angle APC is
then supplementary to B and we have:

(2) L APC = NPL;

hence, subtracting these equal angles in turn from the angle NPC,
we have:

(3) LAPN = CPL,

and therefore, from (1):

(4) L AMN = CML.

Thus the three points L, M, N are collinear.
Conversely, if L, M, N are collinear (4) holds, and from (4) and (1)

we have (3), and therefore also (2), i.e., angle NPL is supplementary
to B, and the point P is concyclic with A, B, C.

140
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Note. The proof of the direct theorem is valid, whether the given
point P lies inside the angle B, as it was assumed, or inside either of
the other two angles of ABC. The proof of the converse theorem is
also valid in these cases. But in the case of the converse theorem,
should the point P be supposed to lie in the vertical angle of an angle
of the triangle ABC, it is evident that in such a case the pointsL, M, N,
could not be collinear.

FIG. 82

It may be observed that the line LMN cuts the circumcircle, for it
passes through the point M which lies inside the circle.
283. Definition. The line LMN (§ 282) is called the Simson line, or,
more briefly, the simson of the point P with respect to the triangle
ABC, or for the triangle ABC; sometimes LMN is referred to as the
pedal line of P.

The line LMN will sometimes be indicated by the symbol P(ABC).
The point P is called the pole of the line LMN for the triangle ABC.

284. Theorem. If three chords drawn through a point of a circle are
taken for diameters of three circles, these circles intersect, in pairs, in
three new points, which are collinear.

Indeed, If PA, PB, PC (Fig. 82) are three chords of the same circle,
the three circles having these chords for diameters pass through the
feet of the perpendiculars from P to the lines BC, CA, AB, and these
three points are collinear (§ 282 a).
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285. Conversely. If the three circles having for diameters the three
segments PA, PB, PC intersect, in pairs, in three collinear points, the
point P is concyclic with A, B, C.

Indeed, these circles pass in pairs through the feet of the per-
pendiculars from P to the lines BC, CA, AB, and if these three points
are collinear the four points P, A, B, C are concyclic (§ 282 b).
286. Theorem. ' If three circles pass through the same point of the circum-
circle of the triangle of their centers, these circles intersect, in pairs, in
three collinear points.

Let A, B, C be the centers of the given circles, and P their common
point, situated on the circle (ABC). The circles (A'), (B'), (C')
having PA, PB, PC for diameters intersect in three collinear points
D', E', F (§ 284), and the points of intersection D, E, F of the given
circles taken in pairs correspond to the points D', E', F' in the ho-
mothecy (P, 2); hence they are also collinear.
287. Conversely. If three circles having a point in common intersect
in pairs in three collinear points, their common point is concyclic with
their centers.

If the points D, E, F are collinear, their corresponding points D', E',
F in the homothecy (P, 2) are also collinear; hence P belongs to the
circumcircle of the triangle ABC (§ 285).
288. Theorem. If the perpendiculars from a point P of the circum-
circle (0) of a triangle ABC to the sides BC, CA, AB meet (0) again in
the points L', M', N', the three lines AL', BM', CN' are parallel to the
simson of P for ABC.

Indeed, we have (Fig. 82) :

LL'AC=L'PC=LPC=LMC;
hence AL' is parallel to NLM.

Similarly for BM' and CN'.
289. Problem. Find the point whose Simson line for a given triangle
has a given direction.

Through any vertex, say B, of the given triangle ABC draw a line
having the given direction, meeting.the circumcircle (0) again in K
(Fig. 83). The perpendicular KM from K to the side AC, opposite the
vertex B, meets (0) in the required point P, and the parallel through
M to KB is the simson of P (§ 288).
290. Theorem. The Simson line bisects the line joining its pole to the
orthocenter of the triangle.
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Let the altitude BE (Fig. 83) meet (0) again in T, and let the parallel
to BK through the orthocenter H of ABC meet the line PMK in U.

From the parallelogram BHUK and the isosceles trapezoid PTBK
we have :

HU = BK, PT = BK;
hence HUPT is an isosceles trapezoid. Now E is the midpoint of HT
(§ 178); hence the mediator EA of the base HT of HUPT bisects the

FIG. 83

other base UP, in M. Thus the simson LMN passes through the
midpoint M of the side PU of the triangle PUH and is parallel to UH;
hence LMN bisects the third side HP.
291. Remark. The midpoint of the segment HP lies on the nine-
point circle (N) of ABC (§ 210).
292. De la Hire's Problem. Construct a triangle given an angle,
the sum of the including sides, and the altitude to the third side (A, b +
c=2s,h.).

Let ABC (Fig. 84) be the required triangle, W, P the traces of the
internal bisector A W of the angle A on BC and on the circumcircle of
ABC, and B, S the projections of P upon AB, AC. We have:
(1) AR + AS = (AB + BR) + (AC - SC) = (AB + AC)

+ (BR - SC).
Now PB = PC (§ 122) and PR = PS; hence, from the two pairs of
congruent right triangles PAR and PAS, PRB and PSC, we have
AR = AS and BR = CS, so that, from (1):

AR = AS = 1 (AB + AC) = s.
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Thus in the quadrilateral ASPR we know the angle SAR = A,
the sides AR, AS, and the angles ARP, ASP are right angles; hence
the quadrilateral may be constructed, and AP is the mediator of RS.

P
FIG. 84

The line RS is the simson of P for ABC; hence RS passes through the
foot M of the perpendicular PM from P upon BC. Let T be the trace
of RS on AWP. From the similar right triangles PMT, ADW, we
have:

(2) PT: AD= PM: AW = PM: (AP - PW),

and in the right triangles PMW, A PS we have:

(3) PM2 = PT PW, PS2 = PT- PA;

hence, from (2) and (3):

(4) PM2 + AD-PM - PS2 = 0.

The segment AD = ha is given, and PS is known from the quadri-
lateral ASPR already donstructed; hence PM may be constructed
(§ 67).

Draw the circle (P, PM) meeting RS in the point M. The per-
pendicular to PM at M will meet the sides AR, AS of the quadrilateral
ASPR in the vertices B, C of the required triangle ABC.

The problem has no solution if the altitude ha is greater than the
segment AT = s sin z A. When ha is equal to AT, the triangle ABC
is isosceles. When AD is smaller than AT, the construction yields
two solutions, symmetrical with respect to AP.
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1. Show that the diametric opposite of a vertex of a triangle on its circumcircle has
for Simson line, with respect to this triangle, the side of the triangle opposite the
vertex considered.

2. Show that the simson of the point where an altitude cuts the circumcircle again
passes through the foot of the altitude and is antiparallel to the corresponding
side of the triangle with respect to the other two sides.

3. Are there any points which lie on their own Simson lines with respect to a given
triangle?

4. If the Simson line P(ABC) meets BC in L and the altitude AD in K, show that
the line PK is parallel to LH, where H is the orthocenter of ABC.

5. If the Simson line P(ABC) is parallel to the circumradius OA, show that the
line PA is parallel to BC.

6. If the perpendiculars dropped from a point P of the circumcircle (0) of the
triangle ABC upon the sides, meet (0) in the points A', B', C', show that the
two triangles ABC, A'B'C' are congruent and symmetrical with respect to an
axis.

7. If L, M, N are the feet of the perpendiculars from a point P of the circumcircle
of a triangle ABC upon its sides BC, CA, AB, prove that (a) the triangles PLN,
PAC are similar; (b) are proportional to BC, CA,
AB; (c) PA PL = PB PM = PC PN.

8. In a given circle to inscribe a triangle so that the Simson line for this triangle of
a given point of the circle shall coincide with a given line. One vertex may be
chosen arbitrarily.

9. Construct a triangle given A, b - c, h,,.
10. Let P, Q, R be the traces of the internal bisectors of the triangle ABC on the

circumcircle (0). Show that the Simson lines of P, Q, R for ABC are the
external bisectors of the medial triangle (T') of ABC. Consider the simsons,
for ABC, of the traces P', Q', R' of the external bisectors of ABC on (0). Con-
sider the traces of any three concurrent bisectors of ABC, or of any three bisec-
tors forming a triangle.

11. Show that the symmetrics, with respect to the sides of a triangle, of a point on
its circumcircle lie on a line passing through the orthocenter of the triangle.

12. If the simson of a point P passes through the diametric opposite of P on the cir-
cumdrele of the triangle considered, show that it also passes through the
centroid of that triangle. -

293. Theorem. The angle formed by the Simson lines of two points for
the same triangle is measured by half the arc between the two points.

Let P, P be the given points (Fig. 85) and K, K' the two points
where the perpendiculars from P, P' to the side AC meet the circum-
circle of ABC. The simsons of P, P are parallel to the lines BK, BK';
therefore the angle between the simsons is equal to the angle KBK'.
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Now the inscribed angle KBK' is measured by half the arc KK', and
arc KK' = arc PP'; hence the proposition.

P
FIG. 85

294. COROLLARY. The perpendiculars (or parallels) through the points
P, P' to the Simson lines P'(ABC), P(ABC), respectively, intersect on
the circumcircle of the triangle ABC.
295. Theorem. The Simson lines of two diametrically opposite points
are perpendicular to each other and intersect on the nine-point circle of the
triangle.

If the points P, P (Fig. 85) are diametrically opposite, the angle
between their simsons p, p' is measured by one fourth of the circum-
ference (§ 293).

The midpoints Q, Q' of the segments HP, HP' correspond to the
points P, P in the homothecy (H, 2); hence the line QQ' corresponds
to PP' in this homothecy, and therefore QQ' is a diameter of the nine-
point circle (N) of ABC (§ 210). Now the two rectangular simsons
p, p' pass through the points Q, Q', respectively (§ 290), hence they
intersect on the circle (N).
296. Remark. Two rectangular Simson lines meet a side of the triangle
in two isotomic points.

For these two points are the projections upon the side considered
of the ends of a diameter of the circumcircle of the triangle.
297. COROLLARY. The nine-point circle of a triangle is the locus of the
points of intersection of the pairs of Simson lines corresponding to pairs
of diametrically opposite points on the circumcircle of the triangle.
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298. Theorem. The angle formed by the two Simson lines of the same
point with respect to two triangles inscribed in the same circle is the same
for all positions of the point on the circle.

Let ABC, DEF be the two triangles inscribed in the same circle (0)
(Fig. 86) and let the perpendiculars to AC and DF from any point P

FIG. 86

of (0) meet (0) again in the points K and K. The simsons p, p' of
P for ABC, DEF are parallel to the lines BK, EK', respectively
(§ 288). Now the angle between BK and EK' is measured by:

(1) (arc KK' - arc BE) = '(arc AD + arc CF - arc BE).

Since this expression does not depend upon P, the proposition is
proved.

Note. In the figure considered the lines BK, EK' meet outside the
circle (0), and the lines AC, DF meet inside of (0). It may, however,
be shown that the proposition remains valid if either of these inter-
sections, or both, change to the opposite.
299. Theorem. The four circumcircles of the four triangles determined
by four given straight lines, taken three at a time, have a point in common.

Let p, q, r, s be the four given lines. The circumcircles (pqr), (pqs)
of the two triangles pqr, pqs have the point pq in common; hence they
meet in a second point, M. Now if P, Q, R, S are the projections of
M upon the lines p, q, r, s, the points in each of the two triads P, Q, R
and P, Q, S are collinear (§ 282 a) ; hence the four points P, Q, R, S lie
on the same line.

The projections of the point M upon the sides of the triangle qrs are
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thus collinear; hence M lies on the circumcircle of this triangle
(§ 282 b), and also on the circumcircle of prs, for similar reasons.
300. Definition. The point M (§ 299) is called the Miquel point of
the four lines p, q, r, s.
301. Remark. Given four lines (no two parallel, no three concurrent),
there is a point, and only one, whose projections upon these lines are
collinear.
302. COROLLARY. The centers of the four circles (pqr), (qrs), (rsp),
(spq) and the point M lie on the same circle (§§ 287, 299).

Indeed, the four points P, Q, R, S being collinear, the point M is
concyclic with any three of these four centers (§ 287); hence the five
points are concyclic.
303. Theorem. The four Simson lines of a point of a circle for the four
triangles determined by the vertices of a quadrilateral inscribed in that
circle, admit the point considered for their Miquel point.

Let ABCD be a cyclic quadrilateral, P a point on its circumcirde,
and A', B', C' the projections of P upon the lines DA, DB, DC. The
lines A'B', B'C', C'A' are the simsons of P for the triangles DAB,
DBC, DCA, and the point P is concyclic with the vertices of the tri-
angle A'B'C' formed- by these Simson lines, for the points A', B', C'
lie on the circle having PD for diameter.

Similarly for any other three of the four lines considered. Hence
the proposition (§§ 299, 300).
304. Theorem. The four Simson lines of four points of a circle, each
taken for the triangle formed by the remaining three points, are concurrent.

Let ABCD be a cyclic quadrilateral. The Simson line D(ABC)
passes through the midpoint of the segment joining D to the ortho-
center of ABC (§ 290), i.e., through the anticenter of ABCD (§ 262).
Similarly for the simsons A (BCD), B(CDA), C(DAB).
305. Theorem. The orthocenters of the four triangles formed by four
lines taken three at a time are collinear.

The segments joining the Miquel point M of the four lines p, q, r, s
(§ 300) to the orthocenters of the four triangles formed by these lines
are bisected (§ 290) by the common Simson line PQRS of M for these
four triangles (§ 299); hence these orthocenters lie on the line which
corresponds to the line PQRS in the homothecy (M, 2).
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EXERCISES

1. If two triangles are inscribed in the same circle and are symmetrical with respect
to the center of that circle, show that the two simsons of any point of the circle
for these triangles are rectangular.

2. The vertices B, C and the circumcircle (0) of the variable triangle ABC are fixed,
and P, P' are two fixed points of (0). Show that the point of intersection of
the Simson lines P(ABC), P'(ABC) describes a circle.

3. Show that the Simson lines of the three points where the altitudes of a triangle
cut the circumcircle again form a triangle homothetic to the orthic triangle, and
its circumcenter coincides with the orthocenter of the orthic triangle.

4. The chords PA, PB, PC of a given circle are the diameters of three circles (PA),
(PB), (PC). The circle (PA) meets the lines PB, PC in the points A', A"; the
circle (PB) meets PA, PC in B', B"; the circle (PC) meets PA, PB in C', C".
Show that the three lines A'A", B'B", C'C" are concurrent.

SUPPLEMENTARY EXERCISES

1. A variable triangle has a fixed circumcircle and a fixed centroid. Prove that
the simson, for this triangle, of a point on its circumcircle passes through a fixed
point.

2. A variable triangle ABC is inscribed in a fixed circle. The vertex A and the
direction of the internal bisector of the angle A are fixed. Show that the
Simson line of a given point P for ABC has a fixed direction.

3. A variable circle passing through two fixed points A, D cuts two fixed lines
through the point A in B and C. Find the locus of the orthocenter of the tri-
angle ABC.

4. A variable triangle has a fixed circumcircle and a fixed vertex, and the variable
opposite side passes through a fixed point. Prove that the Simson line for this
triangle of a given point on its circumcircle passes through a fixed point.

5. A variable circle having its center on the base BC of an isosceles triangle ABC
and passing through A, cuts the sides AB, AC in Q, R. Find the locus of the
midpoint of QR.

6. In a given circle an infinite number of triangles may be inscribed such that the
Simson line, with respect to these triangles, of a given point of the circle will
coincide with a given line. Find the locus of the centroid of these triangles.

7. The perpendiculars dropped upon the sides BC, CA, AB of the triangle ABC
from a point P on its circumcircle meet these sides in L, M, N and the circle in
A', B', C'. The simson LMN meets B'C', C'A', A'B' in L', M', N'. Prove
that the lines AL', BM', CN' are concurrent.

8. Find the locus of the projection of the foot of the altitude to the base of a tri-
angle upon the line joining the projections of a variable point of the base upon
the other two sides of the triangle.

9. Prove that if the Simson line of a point for a triangle passes through the dia-
metric opposite of the given point, it passes also through the centroid of the
triangle. Conversely.
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10. Construct an equilateral triangle so that its sides shall pass, respectively,
through three given collinear points, and its circumcircle shall pass through a
fourth given point.

11. The circumradius OP of the triangle ABC meets the sides of the triangle in the
points A', B', C'. Show that the projections A", B", C" of the points A', B',
C' upon the lines AP, BP, CP lie on the Simson line of P for ABC.

12. Let L, M, N be the projections of the point P of the circumcircle of the triangle
ABC upon the sides BC, CA, AB, and let the Simson line LMN meet the alti-
tudes AD, BE, CF in the points L', M', N'. Show that (a) the segments LM,
L'M' are equal to the projection of the side AB upon the Simson line; (b) the
projections of the segments AL', BM', CN' upon LMN are equal.

13. Through two diametrically opposite points of a circle parallels are drawn to the
simsons of these points with respect to a given triangle inscribed in the circle.
Show that the midpoints of the segments which these parallels determine on the
three sides of the triangle are collinear.

14. Prove that if three triangles are inscribed in the same circle, the three simsons
of any point of the circle form a triangle of a fixed species. Consider some
special cases.



VI

TRANSVERSALS

A. INTRODUCTORY

306. Directed Segments. When two or more segments are con-
sidered on the same line, we can more readily account for their mutual
relations if we take into consideration not only the length of each seg-
ment but its sense as well.

A point may traverse a straight line in two opposite senses. We
choose, arbitrarily, one of these senses, say the one from left to right,
as the positive sense, and the other as the negative sense. If on this
line a segment AB, say 5 inches long, has for its extremities the
points A, B, and the sense from A to B is the positive sense of the
line, we shall say that the segment is +5 inches long, but if the sense
from A to B is the negative sense of the line, we shall say that the
segment AB is equal to -5 inches.

Consequently, in the first case considered the segment BA would
be equal to -5 inches, and in the second case considered the segment
BA would be equal to +5 inches. We thus distinguish between the
two extremities A, B of the segment. When we read the segment as
AB, A is its beginning and B its end, but when we read the segment
as BA, then B is the beginning and A is the end.

We shall refer to a segment whose magnitude and sense are both con-
sidered, as a directed segment.

It is clear that in the case of directed segments we have

(1) AB+BA=0.
307. Three Collinear Points. Given two points A, B on a line, a
third point C may be marked on the line, either between the points

151
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A, B, or beyond the point A, or beyond the point B. If the position
of the point C relative to the points A and B is to be accounted for in
terms of the lengths alone of the segments AB, AC, BC, we arrive at
three different equalities corresponding to the three different positions
of C enumerated. The use of directed segments enables us to cover
all three cases with one formula, namely:

(2) AB=AC+CB, or AB+BC+CA=O.

EXERCISES

1. Show that AB + BC + CD = AD.
2. Show that if M is the midpoint of the segment AB, we have, both in magnitude

and in sign: AB = 2 AM = 2 MB.
3. Show that if 0, A, B are collinear, we have, both in magnitude and in sign:

OA2 + OB2 = AB2 + 2 OA OB.

4. Show that if A, B, P are any three collinear points, and M is the midpoint of the
segment AB, we have, both in magnitude and in sign, PM = 2(PA + PB).

5. Show that if OA + OB + OC = 0, and P is any point of the line AB, then
PA + PB + PC = 3 P0.

6. Show that if we have on the same line OA + OB + OC = 0, O'A' + O'B' +
O'C' = 0, then AA' + BY + CC' = 3 00'.

7. Show that 0. Hint. CD = CA + AD,
DB = DA + AB, BC = BA + AC. Substitute and simplify.

B. STEWART'S THEOREM

308. Theorem. If A, B, C are three collinear points, and P any other
point, we have, both in magnitude and in sign:

(1)

P lies outside of the line ABC, let E be the foot of the per-
pendicular from P on ABC. We have:

PA2 = PEI + EA2 = PEI + (EC + CA)2
= PE2+EC2

PB2 = PE2 + EB2 = PEI + (EC + CB)2
= PE2+EC2+

Now PE2 + EC2 = PC2 and CB = -BC; hence, substituting, we
obtain:

PA2 = PC2 + CA2 + 2
PB2 = PC2 + BC2 - 2 EC BC,
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or, multiplying these two relations by BC, CA, respectively, and
adding:

PA'- BC + PB2.CA = PC2 (BC + CA) +
PC2(BC + CA) + BC-CA(CA + BC)

= (PC2 + BC-CA)(BC + CA)
= (PC2 + BC-CA)(-AB),

which is the required formula (1).
(b) If P lies on the line ABC, we have, applying the formula (1)

to any point Q of the perpendicular to ABC at the point P:

(2)

QA2 = QP2 + PA2, QB2 = QP2 + PB2, QC2 = QP2 + PC2.
Substituting into (2) and remembering that AB + BC + CA = 0 we
obtain the formula (1).

EXERCISES

1. Use Stewart's formula to find the length of the medians of a triangle, of the
internal bisectors, etc.

2. Show that the sum of the squares of the distances of the vertex of the right angle
of a right tnangle from the two points of trisection of the hypotenuse is equal
to g the square of the hypotenuse.

3. If S, G, 0, 1 are the orthocenter, the centroid, the circumcenter, and the incenter
of a triangle, show that:
HI2 + 2 012 = 3(IG, + 2 OG2), 3(I(? + I HG') - 192 = 2 R(R -- 2 r),

where R and r are the circumradius and the inradius.
4. If a line through the vertex A of an equilateral triangle ABC meets BC in F and

the circumcircle in M, show that:

MF MB+MC

C. MENELAUS' THEOREM

309. Observation. A transversal may meet two sides of a triangle
and the third side produced (Fig. 87 a), or all three sides produced
(Fig. 87 b).

The trace of the transversal on a side and the two vertices lying on
that side determine two segments. The six segments thus determined
by a transversal on the sides of a triangle may be divided into two
sets each containing three nonconsecutive segments, i.e., no two seg-
ments of the same set having a common end.
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FIG. 87a

TRANSVERSALS [Ch. VI, § 310, 311, 312

FIG. 87b

310. Menelaus' Theorem. The six segments determined by a trans-
versal on the sides of a triangle are such that the product of three non-
consecutive segments is equal to the product of the remaining three.

Let L, M, N be the traces of the transversal LMN on the sides
BC, CA, AB of the triangle ABC (Fig. 87 a and b), and let the parallel
through C to the opposite side AB meet LMN in D. From the two
pairs of similar triangles NBL and DCL, MAN and MDC we have:

BL-BC=LC-NB, CM-AN=MA-BC;
hence, multiplying and simplifying:

BL-CM-AN = LC-NB-MA,

which proves the proposition.
311. Remark I. It is often more convenient to write this formula
in the following form:

AN BL CM
(m) NB LC MA - 1'

The formula (m) is readily written down by following the perimeter
of the triangle in a definite sense of rotation. The first segment is
taken from a vertex to a point of section by the transversal, and the
second segment from this point of section to the second vertex lying
on the side considered, and so on, until the initial vertex is reached.
312. Remark II. If the segments in the formula (m) are considered
as directed segments and are read in the order suggested, one of the
three ratios will always be negative, and the other two either both
positive, or both negative (§ 309). Thus we have, both in magnitude
and in sign:
(m,) AN BL CM

NB LC MA
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313. Converse Theorem. If three points are taken, one on each side
of a triangle, so that these points divide the sides into six segments such
that the products of the segments in each of the two sets of nonconsecutive
segments are equal in magnitude and opposite in sign, the three points are
collinear.

Let L, M, N be three points on the three sides of the triangle ABC
such that the formula (m') holds. If the three points are not col-
linear, let K be the point on the side BC collinear with M and N.
According to the direct theorem we have:

ANBKCM
NBKCMA

Comparing this formula with the formula (m'), we have, both in mag-
nitude and in sign:

BL:LC = BK:KC,

i.e., the points K and L divide the side BC in the same ratio, both in
magnitude and in sign; hence they coincide, which proves the proposi-
tion.
314. Theorem. (a) The external bisectors of the angles of a triangle
meet the opposite sides in three collinear points.

(b) Two internal bisectors and the external bisector of the third angle
meet the opposite sides in three collinear points.

(a) If U', V', W are the traces of the external bisectors of the
angles A, B, C on the opposite sides, we have:

BU': VC = c:b, CV': VA = a:c, AW':W'B = b:a.

The product of the three ratios is thus equal to one; hence the proposi-
tion (§ 313).

The proof of (b) is analogous.
315. Remark. The six bisectors of the angles of a triangle determine
on the opposite sides six points which lie by threes on four straight
tion.
316. COROLLARY. The sides of the orthic triangle meet the sides of the
given triangle in three collinear points (§ 193).
317. Definition. The line joining the three points (§ 316) is called
the orthic axis of the triangle.
318. Theorem. The lines tangent to the circumcircle of a triangle at the
vertices meet the opposite sides in three collinear points.
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FIG. 88

Let L, M, N (Fig. 88) be the traces on BC, CA, AB of the tangents
to the circumcircle of ABC at the points A, B, C. The angles LAB
and C being measured by half of the same arc AB, the two triangles
ALB, ALC are similar; hence:

AL:LC = AB: AC, or AL2:LC2 = AB2: AC2.

Now AL2 = hence:

BL:LC = c2:b2.
Similarly:

CM: MA = a2:c2, AN:NB = b2:a2;

hence the points L, M, N are collinear (§ 313).
319. Remark. We have proved incidentally that the tangent to the
circumcircle at the vertex of a triangle divides the opposite side ex-
ternally in the ratio of the squares of the two adjacent sides.
320. Definition. The triangle formed by the tangents to the cir-
cumcircle of a given triangle at the vertices is called the tangential tri-
angle of the given triangle.
.321. Theorem. The isotomic points of three collinear points are col-
linear.

If L, M, N are three collinear points on the sides BC, CA, A B of
the triangle ABC, we have (§ 310):

BL CM AN1
LC MA NB

Now if L', M', N' are the isotomic points of L, M, N, we have:
CL':L'B = BL:LC, BN':N'A = AN:NB, AM':M'C = CM:MA;
hence the proposition (§ 313).
322. Definition. Two transversals like LMN and L'M'N' are some-
times referred to as reciprocal transversals.
323. Problem. Draw two lines, of given directions, so that they shall be
reciprocal transversals for a given triangle.
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Let ABC (Fig. 89) be the given triangle and let the line through A,
having the given direction d, meet the lines through B and C, having
the given direction d', in the points P, Q. If B', C' are the midpoints

A

Q
FIG. 89

of AC, AB, the point L = (PC', QB') is common to the two required
transversals. Indeed, the point L being collinear with Q and B', the
parallels through L to QA, QC will meet the side AC in two isotomic
points; similarly for the side AB.

A

B D' D

FIG. 90

324. Theorem. If the pairs of points D, D'; E, E'; F, F' are isotomic
on the sides BC, CA, AB of the triangle ABC, the two triangles DEF,
D'E'F' are equivalent.

Let the lines EF, E'F' (Fig. 90) meet BC in G, G'. The distances of
the points C, D from the base EF are proportional to GC, GD; hence:

area CEF: area DEF = GC:GD,
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and, similarly:
area BE'F':area D'E'F' = G'B:G'D'.

From the reciprocal transversals EF, E'F' we have:

GC = G'B, GD = G'D';
hence :

Now:
area CEF : area DEF = area BE'F' : area D'E'F'.

area CEF = FEC = FAE' = E'AF = E'F'B;

hence the areas DEF, D'E'F' are equal.

EXERCISES

1. The median AA' of the triangle ABC meets the side B'C' of the medial triangle
A'B'C' in P, and CP meets AB in Q. Show that AB = 3 AQ.

2. Show that, if a line through the centroid G of the triangle ABC meets AB in M
and AC in N, we have, both in magnitude and in sign, AN-MB + AM-NC =
AM-AN.

3. Prove that two orthogonal Simson lines are reciprocal transversals.
4. Prove that the triangle formed by the points of contact of the sides of a given

triangle with the excircles corresponding to these sides is equivalent to the tri-
angle formed by the points of contact of the sides of the triangle with the in-
scribed circle.

5. The sides BC, CA, AB of a triangle ABC are met by two transversals PQR,
P'Q'R' in the pairs of points P, P'; Q, Q'; R, R'. Show that the points
X = (BC, QR'), Y = (CA, RP'), Z = (AB, PQ') are collinear.

6. Show that the projections of a point of the circumcircle of a cyclic quadrilateral
upon the sides divide the sides into eight segments such that the product of four
nonconsecutive segments is equal to the product of the remaining four. Hint.
Consider the Simson lines as transversals.

7. A circle whose center is equidistant from the vertices A, B of the triangle ABC
cuts the sides BC, AC in the pairs of points P, P'; Q, Q'. Show that the lines
PQ, P'Q' meet AB in two isotomic points.

S. Two equal segments AE, AF are taken on the sides AB, AC of the triangle ABC.
Show that the median issued from A divides EF in the ratio of the sides AC, AB.

D. CEVA'S THEOREM

325. Observation. If a point S is taken inside the triangle ABC, the
points of intersection L, M, N of the sides BC, CA, AB with the lines
AS, BS, CS divide those sides internally (Fig. 91 a); if the point S is
taken outside of ABC, one of the points L, M, N divides the corre-
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FIG. 91a

A

FiG. 91b

sponding side internally, and the remaining two points divide the sides
externally (Fig. 91 b).

The six segments into which the points L, M, N divide the sides may
be separated into two groups each containing three nonconsecutive
segments (§ 309).
326. Ceva's Theorem. The lines joining the vertices of a triangle to a
given point determine on the sides of the triangle six segments such that
the product of three nonconsecutive segments is equal to the product of the
remaining three segments.

Let the parallels BD, CE to the line ASL (Fig. 91 a and b) through
B, C meet CN, BM in D, E. From pairs of similar triangles we have:

AN:NB = AS:BD,
BL:BC = LS: CE,
BC:LC = BD:LS,

CM: MA = CE: AS;

hence, multiplying and simplifying:

AN BLCM
(c) NB * LC - MA 1'

which proves the proposition.
OTHERWISE. If we cut the two triangles ALC, ALB (Fig. 91) by

the two transversals BSM, CSN, respectively, we have, by Menelaus'
theorem, both in magnitude and in sign:

LB-CM-AS =-BC-MA-SL,
AN-BC-LS =-NB-CL-SA.

Multiplying and simplifying we obtain the formula (c).
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327. Remark. If directed segments are considered, one of the three
ratios of the formula (c) is always positive, while the other two are
either both positive, or both negative (§ 325); hence the formula (c) is
valid both in magnitude and in sign.

The formula (c) may readily be written down the same way as the
formula (m) (§ 311).
328. Converse Theorem. If three points taken on the sides of a triangle
determine on these sides six segments such that the products of the seg-
ments in the two nonconsecutive sets are equal, both in magnitude and in
sign, the lines joining these points to the respectively opposite vertices are
concurrent.

The proof is similar to the proof of the converse of Menelaus' theo-
rem (§ 313).
329. Definitions. If a line is drawn through a vertex of a triangle,
the segment included between the vertex and the opposite side is called
a cevian. The segments AL, BM, CN (Fig. 91) are cevians.

The triangle LMN (Fig. 91) may be called the cevian triangle of the
point S for the triangle ABC.
330. Theorem. The lines joining the vertices of a triangle to the points
of contact of the opposite sides with the inscribed circle are concurrent.

If X, Y, Z are the points of contact of the sides BC, CA, AB of the
triangle ABC with the incircle, we have (§ 157) :

AZ=AY, BX = BZ, CY = CX;
hence:

which proves the proposition (§ 328).
331. Definition. The point common to the lines AX, BY, CZ (§ 330)
is often referred to as the Gergonne point of the triangle.
332. Theorem. The lines joining the points of contact of an excircle
with the sides of a triangle to the vertices opposite the respective sides, are
concurrent.
333. Theorem. The lines joining the vertices of a triangle to the points
of contact of the opposite sides with the excircles relative to those sides are
concurrent.

The proofs of these two propositions are analogous to the proof of
the preceding proposition (§ 330).
334. Definition. The point common to the three lines of the last
proposition (333) is often referred to as the Nagel point of the triangle.
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EXERCISES

1. Use Ceva's theorem to prove that in a triangle (a) the medians are concurrent;
(b) the internal bisectors are concurrent; (c) the altitudes are concurrent. Hind.

AF:AE = b:c.
2. A parallel to the side BC of the triangle ABC meets AB, AC in B', C'. Prove

that the lines BC', B'C meet on the median from A.
3. Given a triangle ABC and two points P, P'. The parallels through P' to PA,

PB, PC meet BC, CA, AB in the points D', E', F', and the parallels through P
to PA, P'B, P'C meet BC, CA, AB in D, E, F. Show that if the lines AD',
BE', CF' are concurrent, the same holds for the lines AD, BE, CF

4. With a point M of the side BC of the triangle ABC as center circles are drawn
passing through Band C, respectively, meeting AB, AC again in N, P. For what
position of M-will the lines AM, BP, CN be concurrent? Hint. Consider the
traces on BC of the mediators of AB, AC.

335. Theorem. If the three lines joining three points marked on the
sides of a triangle to the respectively opposite vertices are concurrent, the
same is true of the isotomics of the given points.

The proof is similar to the proof relative to reciprocal transversals
(§ 321).
336. Definition. The points common to the two sets of concurrent
lines considered (§ 335) may be referred to as isotomic conjugates for
the triangle, or, more briefly, as isotomic for the triangle.
337. Theorem. The incenier of a triangle is the Nagel point of the
medial triangle.

Let L be the point where the line IX, produced, meets the line AXa
(Fig. 92). From the two pairs of similar triangles IUX and UXQI3,
AIL and AIaXa we have:

XI:Xaja = IU: UIa, IL:XJI3 = IA:AI..

Now the right-hand sides of these two equalities are equal. Indeed,
the two pairs of points A, U and I, I. are harmonic (120); hence
XI = IL, and XA' = A'X3 (§ 160). Consequently the lines A'I and
AXa are parallel.

The lines A'I, AXa may be considered corresponding elements in
the two homothetic figures formed by the triangle ABC and its medial
triangle A'B'C' (§ 98), for these two lines are parallel and pass through
the homothetic points A, A'. Hence the line A'I and its analogous
lines 51, C'I meet in the Nagel point of A'B'C', i.e., the Nagel point
of A'B'C' coincides with I.



162 TRANSVERSALS [Ch. VI, § 338, 339, 340

FIG. 92

338. COROLLARY I. The Nagel point M of ABC and I, its incenter, are
collinear with the centroid G of ABC, and 2 IG = GM.
339. COROLLARY II. The Nagel point of a triangle is the incenter of the
anticomplementary triangle.
340. Theorem. If LMN is the cevian triangle of the point S for the
triangle ABC, we have:

SL SM SN
AL+BM+CN= 1.

The segments SL, AL are proportional to the distances of the
points S, A from the side BC; hence:

SL: AL = area SBC: area ABC,
and similarly:

SM : BM = area SCA : area ABC, SN : CN =area SAB:area ABC.

Adding these three equalities and observing that:

area SBC + SCA + SAB = area ABC,

we obtain the announced relation.
The formula is valid both in magnitude and in sign, whatever the

position of the point S with respect to ABC may be.
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341. COROLLARY. We have:

AS BS CS
AL+BM+CN 2.

Indeed, we have:

163

AS AL-SL SL
AL

_
AL - 1 AL'

and similarly for the other two ratios. Adding the three we readily
obtain the stated formula.
342. Theorem. If LMN is the cevian triangle of the point S for the
triangle ABC, we have:

AS AM AN
SL MC + NB

If the parallels through C, B to ASL meet BM, CN in E, D, we have
from similar triangles:

AS:EC = AM:MC,
AS:DB = AN:NB,
SL : EC = BL: BC,
SL:DB = LC:BC.

Dividing the sum of the first two of these equalities by the sum of
the last two we readily arrive at the stated formula.
343. Desargues' Theorem. Given two triangles ABC, A'B'C', if the
three lines AA', BB', CC' meet in a point, S, the three points P = (BC,
B'C'), Q= (CA, C'A'), R= (AB, A'B') lie on a line, s. Conversely.

Cutting the three triangles SBC, SCA, SAB (Fig. 93) by the three
transversals PB'C', QC'A', RA'B', respectively, we have by Menelaus'
theorem, both in magnitude and in sign:

SB' BP CC' SC' C? AA' SA' AR BB'
B'B PC C'S --1' C'C QA AS 47A RB B'S

Multiplying these three equalities, we obtain, after simplification:

BP CQ AR--1
PC QA RB

which proves the proposition (§ 313).
Conversely, suppose that the three points P, Q, R are collinear. If

the lines BY, CC' meet in S, it is required to prove that the line AA'
also passes through S.
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A'
FIG. 93

By assumption, the lines QR, CB, C'B' joining corresponding ver-
tices in the two triangles QCC', RBB' are concurrent; hence by the
direct theorem the three points S = (CC', BB'), A = (QC, RB), A'
(C'Q, B'R) are collinear.
344. Definitions. The two triangles ABC, A'B'C' are said to be
homological, or perspective.

The point S is the center, and the line PQR the axis, of homology, or
of perspectivity of the two triangles.

EXERCISES

1. If the incircle of the triangle ABC touches the sides BC, CA, AB in the points
X, Y, Z, and M is the Gergonne point of ABC, show that AM: MX = a(p - a):
(p - b)(p - c); prove that (AM: MX) (BM: MY) (CM: MZ) = 4 R: r. State
and prove similar results for the excircles.

2. Prove that the sum of the reciprocals of the three cevians passing through the
circumcenter of a triangle is equal to twice the reciprocal of the circumradius.

3. The lines AP, BQ, CR through the vertices of a triangle ABC parallel, respec-
tively, to the lines OA', OB', OC' joining any point 0 to the points A', B', C'
marked, in any manner whatever, on the sides of BC, CA, AB meet these sides
in the points P, Q, R. Show that:

OA' OB' OC'
AP+BQ+CR=1.

4. If the altitudes AD, BE, CF of the triangle ABC meet the circumcircle of ABC
again in P, Q, R, show that we have (AP:AD) + (BQ:BE) + (CR:CF) = 4.

5. The parallels to the sides of a triangle ABC through the same point, M, meet the
respective medians in the points P, Q, R. Prove that we have, both in magni-
tude and in sign, (GP:GA) + (GQ:GB) + (GR:GC) = 0.
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6. The circumdiameters AP, BQ, CR of a triangle ABC meet the sides BC, CA, AB
in the points K, L, M. Show that (KP:AK) + (LQ:AQ) + (MR:AM) = 1.

7. Show that the line joining the incenter of the triangle ABC to the midpoint of
the segment joining A to the Nagel point of ABC is bisected by the median
issued from A.

S. Use Desargues' theorem to prove that (a) the sides of the orthic triangle meet
the sides of the given triangle in three collinear points; (b) the lines joining the
points of contact of the sides of a triangle with the inscribed circle meet the
corresponding sides of the triangle in three collinear points; (c) the lines joining
the vertices of a triangle to the corresponding vertices of the tangential triangle
are concurrent. State and prove other similar propositions.

9. By means of Desargues' theorem, construct, with ruler alone, the line joining a
given point to the inaccessible point of intersection of two given lines.

SUPPLEMENTARY EXERCISES

1. Use Menelaus' theorem to prove the Simson line theorem (§ 282).
2. Show that (a) the twelve lines projecting from the vertices of a triangle and

joining the points of contact of the opposite sides with the tritangent circles
intersect by threes in eight points which may be grouped into four pairs of
isotomic points for the triangle; (b) four of these points are the tritangent
centers of the anticomplementary triangle of the given triangle.

3. If two triangles are symmetrical with respect to a point, show that the reciprocal
transversals of the sides of one triangle with respect to the other are concurrent.

4. If the cevian triangle of. a point for a given triangle has its sides antiparallel to
the sides of the given triangle, show that the point coincides with the orthocenter
of the given triangle.

5. Three parallel lines are cut by three parallel transversals in the points A, B, C;
A', B', C'; A", B", C". Show that the lines B"C, C'A", AB' are concurrent.

6. Show that the lines joining the vertices of a given equilateral triangle to the
images of a given point in the respectively opposite sides are concurrent.

7. The triangle (Q) = DEF is inscribed in the triangle (P) = ABC, and the tri-
angle (R) = KLM is inscribed in (Q). Show that if any two of these triangles
are perspective to the third, they are perspective to each other.

8. Through the vertices of a triangle ABC lines are drawn intersecting in 0 and
meeting the opposite sides in D, E, F. Prove that the lines joining A, B, C to
the midpoints of EF, FD, DE are concurrent.

9. If (Q) is the cevian triangle of a point M for the triangle (P), show that the
triangle formed by the parallels through the vertices of (P) to the corresponding
sides of (Q) is perspective to (P).

10. Prove that the lines joining the midpoints of three concurrent cevians to the
midpoints of the corresponding sides of the given triangle are concurrent.

11. The parallels through the vertices of a given triangle (Q) to the respective sides
of a second given triangle (P) form a triangle (P), and the parallels through the
vertices of (P') to the respective sides of (Q) form a triangle ((Y). Show that
if the triangles in one of the two pairs (P), (Q); (P'), (Q') are perspective, the
same is true of the triangles of the second pair.



VII

HARMONIC DIVISION

345. Definition. Let the points C, D divide the segment A B inter-
nally and externally in the same ratio (§ 54). If we consider the seg-
ments on the line ABCD as directed segments (§ 306) and agree to
write the ratios in which the segment AB is divided by the points
C, D in the following form:

AC:CB, AD:DB,

the first ratio will be positive and the second negative. Hence we
have, both in magnitude and in sign:

(a) (AC:CB) + (AD:DB) = 0,

(b) AC - AD , or
AC AD = -1.

CB DB CB
,

' DB

The formula (b) is sometimes represented by the symbol (ABCD) _
-1, and the four points involved are said to form a harmonic range.
346. Theorem. If the segments of the harmonic range (ABCD) = -1
are measured from the midpoint 0 of the segment AB, we have, both in
magnitude and in sign:

(c) OA2.

From the formula (b) we have:

(d) AC + CB AD - DB
AC-CB AD+DB

Now making use of the formulas in §§ 306, 307, we have, both in mag-
nitude and in sign:

166
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AC+CB=AB=AD+DB=2A0,
(e) AC-CB= (AO+OC)- (CO+OB)=2OC,

AD - DB = (AO + OD) - (DO + OB) = 20D.

Substituting these values into (d) we obtain (c).
347. Converse Theorem. If 0 is the midpoint of the segment AB,
and if C, D are two points of the line AB such that OA 1, both
in magnitude and in sign, then (ABCD) is a harmonic range.

Indeed, from the given formula, by making use of the relations (e),
we readily obtain (d), from which follows (b).
348. Theorem. If, in the harmonic range (ABCD), all segments are
measured from one point of the range, say B, we have, both in magnitude
and in sign:

(f) BA BC + BD

The formula (b) (§ 345) may be put in the form

AB+BC AB+BD
CB DB

hence:

-1 + (BA : BC) = 1 - (BA : BD),

and (f) follows immediately.
349. Converse Theorem. If A, B, C, D are four collinear points and
the directed segments BA, BC, BD satisfy the relation (f), the points
form a harmonic range.

This converse proposition is proved by taking the above steps in re-
verse order.
350. Problem. Find a pair of points which separates harmonically each
of two given pairs of collinear points.

The two given pairs of points A, B; C, D (Fig. 94) and any point X
outside the given line determine two circles XAB, XCD meeting in a
second point Y. The circle having for center the trace R of X Y on
AB and for radius the length of the tangent RZ from R to the circle
XAB meets the line AB in the two required points P, Q.

Indeed, we have:

hence the points P, Q satisfy the two conditions of the problem (§ 346).
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FIG. 94

[Ch. VII, § 350

DISCUSSION. In order that the problem may have a solution it is
necessary that the point R shall lie outside the circles- XAB, XCD.
This will happen when the segments AB, CD lie entirely outside one
another, or when one lies entirely inside the other, but not when the
two segments overlap. The line X Y will be parallel to AB if the two
segments AB, CD have the same midpoint.

When the problem has a solution, the solution is unique.

EXERCISES

1. Show that if the four points 0, A, C, D are collinear, and OA2 = both in
magnitude and in sign, the symmetric of A with respect to 0 coincides with the
harmonic conjugate of A with respect to C, D.

2. Given the parallelogram MDOM', the vertex 0 is joined to the midpoint C of
MM'. If the internal and external bisectors of the angle COD meet MD in A
and B, show that MD' = MA MB.

3. If the points C, D divide harmonically the segment AB, whose midpoint is 0,
prove that:

002 + 0D2 = CD2 + 2 0A2.

4. If (ABCD) =-1, and A', B' are the harmonic conjugates of D with respect to
the pairs of points A, C and B, C, prove that (A'B'CD) =-1. Hint. Use
formula (f) (§ 348).

S. If (ABCD) = -1, and M is the midpoint of AB, show that:
1 1 1

CA CB +DA DB
_

MA MB

6. If (ACBD) 1, show that:

BC AB A+D+CD
7. If (ABCD) = -1, show that DA DB = DC-DO, where 0 is the midpoint of the

segment AB.
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8. If A, B, C, D are four points on a straight line taken in order, show that the locus
of a point at which the segments AB, CD subtend equal angles is a circle having
for the ends of a diameter the pair of points separating harmonically each of the
two pairs of points A, D; B, C.

351. Theorem. Given (ABCD) _ -1 and a point 0 outside the line AB,
if a parallel through B to OA meets OC, OD in P, Q, we then have PB = BQ.

From the two pairs of similar triangles OAC and PCB, DAD and
BQD (Fig. 95) we have:

(p) AO:PB = AC:CB, AO:BQ = AD:BD.
Now since (ABCD) _ -1, the right-hand sides of these two equalities
are equal; hence PB = BQ.
352. Converse Theorem. Given four collinear points A, B, C, D and
a point 0 outside that line, if the parallel through B to OA meets OC, OD
in P, Q, and PB = BQ, then (A BCD) = -1.

Indeed, from similar triangles we have the relations (p), and since
PB = BQ, the left-hand sides of the equalities (p) are equal; therefore
the right-hand sides are equal; hence (ABCD) _ -1.

0

P
FIG. 95

353. Theorem. Given (ABCD) =-1 and a point 0 outside the line
AB, any transversal cuts the four lines OA, OB, OC, OD in four har-
monic points.

Let A'B'C'D' be the transversal (Fig. 95) and let the parallels to
OA through B and B' meet OC, OD in P, Q and P', Q'. From similar
triangles we have:

PB:P'B' = OB:OB' = BQ:B'Q'.
Now since (ABCD) = -1, we have (§ 351) PB = BQ; hence P'B' _
B'Q', and therefore (A'B'C'D') = -1 (§ 352).
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354. Definitions. Four concurrent lines OA, OB, OC, OD which are
cut by one transversal, and therefore by every transversal (§ 353), in
four harmonic points, are said to form a harmonic pencil; each of the
four lines is called a ray of the pencil, and 0 is called its center, or ver-
tex; OA and OB, OC and OD are said to be the pairs of conjugate rays,
and OC, OD are said to be harmonically conjugate with respect to OA,
OB, or harmonically separated by OA, OB. The pencil is often repre-
sented by 0(ABCD) = -1, or by O(AB, CD).
355. Theorem. If two conjugate rays of a harmonic pencil are rec-
tangular, they are the bisectors of the angles formed by the other two rays
of the pencil.

Given 0(ABCD) _ -1 (Fig. 96) let a parallel to OA meet OB, OC,
OD in F, G, H. We have (§ 351) GF = FH, and if OA is perpendicu-
lar to OB, the triangle OGH is isosceles; hence the proposition.

C
FIG 96

356. Theorem. If (ABCD) =-1, (A'B'C'D') =-I, and the lines
AA', BB', CC' meet in a point, say 0, then DD' passes through 0.

Since (ABCD) = -1, the trace of the line OD on the line A'B' is
the harmonic conjugate of C' with respect to A', B', and therefore
coincides with D'; hence the proposition.
357. COROLLARY. If (ABCD) = -1, (AB'C'D') -1, and the lines
AB, AB' are distinct, the lines BB', CC', DD' are concurrent.

EXERCISES

1. Construct the harmonic conjugate of the ray OC with respect to the rays OA, OB.
2. In the triangle ABC prove that A(OHIIb) =-1.
3. Show that on a given line there is, in general, one point such that the lines joining

that point to two given points form an angle which is bisected by the given line.
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4. Given (ABCD) = -1. The perpendiculars to CD at the points C, D meet a
transversal through A in F, Q. Show that AB bisects the angle PBQ_

5. Prove that (a) the parallels through a given point to the four lines of a harmonic
pencil also form a harmonic pencil; (b) the perpendiculars from a given point to
the four rays of a harmonic pencil also form a harmonic pencil; (c) the sym-
metrics, with respect to a given axis, of the four rays of a harmonic pencil also
form a harmonic pencil. Hint. Prove by superposition-

6. Show that the lines joining a point of a circle to the ends of a chord divide har-
monically the diameter perpendicular to that chord.

7. In the parallelogram ABCD, AE is drawn parallel to BD; show that
A(ECBD) = -1.

8. If A', B', C' are the midpoints of the sides of the triangle ABC, prove that A'A
is the harmonic conjugate of AT with respect to A'B', A'C'.

9. AD, AA' are the altitude and the median of the triangle ABC; the parallels
through A' to AB, AC meet AD in P, Q; show that (ADPQ) = -1.

10. With the usual notations for the triangle ABC, if DF meets BE in K, show that
(BHKE) = -1; also if EF meets BC in M, show that (BCDM) = -1.

11. Through a given point to draw a transversal so that its three points of inter-
section with three given lines (concurrent or not) shall form with the given point
a harmonic range.

12. The tangent to a circle at the point C meets the diameter AB, produced, in T;
prove that the other tangent from T to the circle is divided harmonically by
CA, CB, CT, and its point of contact.

13. The circle having for diameter the median AA' of the triangle ABC meets the
circumcircle in L: show that A(LDBC) = -1, where AD is the altitude.

SUPPLEMENTARY EXERCISES

1. Given three collinear points A, B, C, the points A', B', C' are constructed so that
(AA'BC) = -1, (BS'CA) _ -1, (CC'AB) _ -1. Prove that we also have
(A'AB'C') = -1, (B'BC'A') = -1, (C'CA'B') = -1.

2. Given two fixed lines OX, OY, a variable secant through the fixed point A of OX
meets OY in B, and the circle (B, BO) meets AB in C, D. Show that the locus
of the point M such that (AMCD) = -1 is a circle.

3. Two variable points P, Q are taken on the base BC of the triangle ABC so that
(BCPQ) = -1. Show that the locus of the circumcenter of the triangle APQ
is a straight line.

4. The sides AB, AC intercept the segments DE, FG on the parallels to the side BC
through the tritangent centers I and I. Show that:

BC DE + FG

S. A secant through the vertex A of the parallelogram ABCD meets the diagonal
BD and the sides BC, CD in the points E, F, G. Show that:

E AF +A AAGG



CIRCLES

A. INVERSE POINTS

358. Definition. Two points collinear with the center of a given
circle and the product of whose distances from the center is equal to
the square of the radius are said to be inverse points with respect to,
or for, the circle (Fig. 97).

Two inverse points lie on the same side of the center of the circle.
Of two inverse points one lies inside and the other outside the circle.
If a point is taken on the circle, its inverse coincides with the point

considered.
359. Theorem. Two inverse points divide the corresponding diameter
harmonically. Conversely.

Let P, Q (Fig. 97) be the two inverse points, A, B the ends of the
diameter passing through P, Q, and 0 the center of the circle. We
have, by hypothesis, OP OQ = OB2; hence (ABPQ) = -1 (§ 346).

Conversely, if (ABPQ) = -1, we have (§ 347) OB2;
hence the points P, Q are inverse for the circle.

FIG. 97
172
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360. Theorem. The ratio of the distances of a variable point of a circle
from two given inverse points is constant.

Let the inverse points P, Q lie on the diameter AB (Fig. 97). The
range (ABPQ) is harmonic (§ 359), hence also the pencil M(ABPQ),
where M is any point on the circle. Now angle AMB = 900; hence
MA, MB bisect the angle PMQ (§ 355) and therefore:

MP:MQ = PB:BQ.

361. Definition. The triangle formed by the feet of the perpendiculars
from a given point upon the sides of a given triangle is called the pedal
triangle of the point with respect to, or for, the given triangle.
362. Theorem. (a) The pedal triangles, for a given triangle, of two
points inverse for the circumcircle of the given triangle are similar.

Fio. 98

(b) Conversely. If the pedal triangles of two points for a given triangle
are similar, the two points are inverse with respect to the circumcircle of
the given triangle.

Let DEF, D'E'F', be the pedal triangles of the points P, P' with
respect to the triangle ABC. In the two circles having AP, AF' for
diameters the two chords EF, E'F' (Fig. 98) subtend the same angle A;
hence the two isosceles triangles having EF, E'F' for bases and the cen-
ters of the respective circles for opposite vertices are similar. Thus:

EF:E'F' = AP:AP.
Similarly:

FD:F'D' = BP:BP', DE:D'E' = CP:CP'.
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Now if P, P' are inverse points for the circle ABC, the right-hand
sides of these proportions are equal (§ 360); hence the same holds for
the left-hand sides, which proves the direct proposition.

Conversely, if DEF, D'E'F' are similar, the left-hand sides of these
propositions are equal; hence the same holds for the right-hand sides;
consequently, by locus 11 (§ 11) the points P, P divide harmonically
a diameter of the circle ABC, which proves the converse proposition.

EXERCISES

1,. Prove that two pairs of inverse points with respect to the same circle are cyclic,
or collinear.

2. From a point P outside a given circle, center 0, the tangents are drawn to the
circle. Show that P is the inverse of the point of intersection of OP with the
chord of contact.

3. If the circle (B) passes through the center A of the circle (A), and a diameter of
(A) meets the common chord of the two circles in F and the circle (B) again in G,
show that the points F, G are inverse for the circle (A).

4. Show that (a) if P, Q are two inverse points with respect to a circle, center 0, and
M is any point on the circle, the triangles OMP, OMQ are similar; (b) if R, S
is another pair of inverse points collinear with P, Q, the angles PMR, QMS are
either equal or supplementary.

5. Show that (a) the two lines joining any point of a circle to the ends of a given
chord meet the diameter perpendicular to that chord in two inverse points;
(b) the two lines joining any point of a circle to two given inverse points meet the
circle again in the ends of a chord perpendicular to the diameter containing the
given inverse points; (c) the four lines joining the ends of a chord of a circle to two
inverse points located on the diameter perpendicular to the chord considered
intersect in pairs on the given circle.

6. If P, Q are two inverse points with respect to a circle and CD is a chord per-
pendicular to the diameter containing P, Q, the angles which the segments CP,
DQ subtend at any point M of the circle are either equal or supplementary.

B. ORTHOGONAL CIRCLES

363. Definition. Two circles are said to be orthogonal if the square
of their line of centers is equal to the sum of the squares of their
radii.
364. Theorem. (a) In two orthogonal circles the two radii passing
through a common point of the two circles are rectangular.

(b) Conversely. If the two radii passing through a point common to
two circles are rectangular, the two circles are orthogonal.
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365. Theorem. (a) If two circles are orthogonal the circle having for
diameter their line of centers passes through their common points.

(b) Conversely. If the circle having for diameter the line of centers of
two given circles passes through the points common to these circles, the
two given circles are orthogonal.
366. Theorem. If two circles are orthogonal, the radius of one circle
passing through a point common to the two circles is tangent to the second
circle.

Let C be a point common to the two orthogonal circles (A), (B).
The tangent to (B) at C is perpendicular to the radius BC; hence this
tangent coincides with the radius AC of (A) (§ 364 a).
367. Converse Theorem. Given two intersecting circles, if the radius
of one circle passing through a point common to the two circles is tangent
to the second circle, the two circles are orthogonal.

The two radii passing through the common point considered are
rectangular; hence the proposition (§ 364 b).
368. Theorem. If two circles are orthogonal, any two points of one of
them collinear with the center of the second circle are inverse for that
second circle.

Let (A), (B) (Fig. 99) be two orthogonal circles, let E, F be two
points of (B) collinear with the center A of (A), and let C, D be the
ends of the diameter AEF of (A).

FIG. 99

If M is a point common to (A) and (B) we have AM' = AE-AF.
But AM = AC = AD; hence (§ 347) (CDEF) _ -1, which proves
the proposition (§ 359).
369. Converse Theorem. If two points of one circle are inverse for a
second circle, the two circles are orthogonal.



176 CIRCLES [Ch. VIII, § 369, 370, 371, 372

By hypothesis, the two points E, F of (B) (§ 368) are collinear with
A (Fig. 99) and are inverse with respect to (A); therefore:

AC2 = AE-AF; hence AM2 = AE-AF.
Thus AM is tangent to (B) ; hence the circles are orthogonal (§ 367).

370. COROLLARY. If (ABCD) = -1, the circle on AB as diameter is
orthogonal to any circle through C and D.
371. Problem. Through two given points to pass a circle orthogonal to
a given circle.

The two given points A, B and the inverse A' of one of them, say A,
with respect to the given circle (0) determine the required circle (S).

The problem has, in general, one solution, for the inverse B' of B
will also lie on (0) (§ 368).

If the points A, B are collinear with the center 0 of (0), the problem
either has an infinite number of solutions, or is impossible, according
as the points A, B are, or are not, inverse for (0).
372. Theorem. The two lines joining the points of intersection of two
orthogonal circles to a point on one of the circles meet the other circle in
two diametrically opposite points.

FIG. 100

Let the lines EA, FA joining the points of intersection E, F of the
two orthogonal circles (P), (Q) to the point A of (P) meet (Q) again
in C, D (Fig. 100). We have:

LEAF = Z EPF = EPQ, L ECF = Z EQF = EQP;
hence:

LEAF + ECF = EPQ + EQP = 90°,

and therefore the triangle CAF is right-angled at F. Thus CD sub-
tends a right angle at F, which proves the proposition.
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EXERCISES

1. With a given point as center to draw a circle orthogonal to a given circle.
2. Show that if the quadrilateral having for vertices the centers and the points of

intersection of two circles is cyclic, the circles are orthogonal.
3. Show that if the sum of the angles in the segments of two intersecting circles on

opposite sides of the common chord is equal to 90° or 270°, the two circles are
orthogonal.

4. Through a given point to draw a circle orthogonal to two given circles.
5. Show that the product of the radii of two orthogonal circles is equal to one half

the product of the common chord and the line of centers of the two circles.
6. Draw a circle orthogonal to a given circle and including within it a third of the

circumference of the given circle.
7. (a) With the vertices of a given triangle ABC as centers, three circles are de-

scribed so that each is orthogonal to the other two. Find their radii in terms of
the sides of the triangle, (b) Show that the squares of the radii of these circles
are respectively equal to

8. Show that (a) in a triangle ABC the circles on AH and BC as diameters are
orthogonal; (b) the circle IBC is orthogonal to the circle on IbI, as diameter.

9. Show that the locus of the centers of the circles passing through a given point
and orthogonal to a given circle is a straight line.

10. Show that if AB is a diameter and M any point of a circle, center 0, the two
circles AMO, BMO are orthogonal.

11. Through a given point outside a given circle to draw a secant so that the product
of the distances of its points of intersection with the circle to the diameter pass-
ing through the given point shall have a given value.

12. Show that (a) given two perpendicular diameters of two orthogonal circles, the
lines joining an end of one of these diameters to the ends of the other pass
through the points common to the two circles; (b) the ends of two perpendicular
diameters of two orthogonal circles form an orthocentric group. Conversely.

C. POLES AND POLARS

373. Theorem. The harmonic conjugate of a fixed point with respect
to a variable pair of points which lie on a given circle and are collinear
with the fixed point, describes a straight line.

On the given circle (0) take two points E, F collinear with the given
fixed point P (Fig. 101 a and b). Let M be the harmonic conjugate
of P for E, F, and Q the foot of the perpendicular from M upon the
diameter AB of (0) passing through P.

The circle PMQ has PM for diameter, and the points E, F divide
PM harmonically; hence the circles (0) and PQM are orthogonal
(§ 369). Consequently the points P, Q in which the circle PMQ is
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FIG. 101a FIG. 101b

met by the diameter AB of (0) are inverse with respect to (0), i.e., the
point Q is fixed, regardless of the choice of the pair of points E, F of
(0), which proves the proposition.
374. Definition. The line MQ (§ 373) is said to be the polar line of
the point P with respect to, or for, the circle, and the point P is said
to be the pole of the line MQ.
375. CONSEQUENCES. (a) The polar of a given point for a circle is the
perpendicular to the diameter passing through the given point, at the
inverse of this point for the circle.

(b) The pole of a given line with respect to a circle is the inverse of the
foot of the perpendicular from the center of the circle upon the given line.
376. Remark I. The polar of a point on the circle is the tangent at
that point to the circle, and the pole of a tangent is its point of contact.

For the inverse of a point on the circle coincides with the point con-
sidered.
377. Remark H. Every point in the plane has a polar for a given
circle, except the center of the circle.

Every line in the plane has a pole for a given circle, except the lines
passing through the center of the circle.
378. Remark III. If the pole lies inside the circle, the polar does not
cut the circle.

If the pole lies outside the circle, its polar coincides with the line
joining the points of contact of the tangents from the pole to the
circle.

Indeed, the trace P (Fig. 102) of the chord of contact TT' on the
diameter OP passing through the pole P is the inverse of P with re-
spect to the circle, inasmuch as in the right triangle OTP we have
OT2 = OP-OP'.
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379. Theorem. If the polar of the point P passes through the point Q,
the polar of Q passes through the point P.

If the Line PQ meets the circle in two points C, D, the proposition
is almost obvious. Indeed, if the polar of P passes through Q, we

FIG. 102

have (PQCD) = -1 (§ 373) ; hence P is the harmonic conjugate of Q
for C, D, and the polar of Q will pass through P.

The following proof is valid, whether or not the line PQ meets the
circle.

The two points P, Q and the their inverses P', Q' for the given
circle (0, R) are cyclic, for R2 = OQ.OQ'; hence the angles
PP'Q, PQ'Q of the cyclic quadrilateral PQQ'P' (Fig. 102) are equal.
But QP' is the polar of P, since it passes through Q and through the
inverse P of P; hence angle PP'Q = 90°, and therefore angle PQ'Q =
90°. Thus the line PQ' passes through the inverse Q' of Q and is
perpendicular to OQ, i.e., PQ' is the polar of Q(§ 375), and since PQ'
passes through P, the proposition is proved.
380. Definition. Two points such that the polar of one passes through
the other are called conjugate points with respect to the circle.

A given point has an infinite number of conjugate points, namely,
all the points of its polar.

If two conjugate points are collinear with the center of the circle,
they are inverse points for the circle.
381. Theorem. If the pole of the line p lies on the line q, the pole of the
line q lies on the line p.

Let P, Q be the poles of p, q. By hypothesis P lies on q, i.e., the
polar q of Q passes through P; hence (§ 379) the polar p of P passes
through Q.
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382. Definition. Two lines such that the pole of one lies on the
other are said to be conjugate lines for the circle.

A given line has an infinite number of conjugate lines, namely, all
the lines through the pole of the given line.
383. Theorem. (a) The polars of all the points of a given line pass
through a fixed point, namely, the pole of the given line.

(b) The poles of all the lines passing through a given point lie on a
straight line, namely, the polar of the given point.
384. COROLLARY. (a) The pole of any line is the point of intersection
of the polars of two of its points.

(b) The polar of any point joins the poles of two lines passing through
the point.
385. Theorem. If two conjugate lines meet outside the circle, they are
harmonic conjugates with respect to the two tangents from their point of
intersection to the circle.

Let the conjugate lines PQ, PR meet the chord of contact TT' of
the tangents from P to the circle in the points Q, R (Fig. 103). The
pole of PR lies on PQ (§ 382) and on the polar TT' of P (§ 379), since
PR passes through P; hence Q is the pole of PR. Thus (§ 373)
(TT'QR) = -1, and therefore the pencil P(TT'QR) is harmonic.

386. Theorem. If two circles are orthogonal, any two diametrically
opposite points of one circle are conjugate with respect to the other circle.

The line PC (Fig. 104) joining P to the center C of (C) meets (C')
again in the inverse S of P with respect to (C) (§ 368); hence the polar
of P with respect to (C) is perpendicular to PC at S, and therefore
meets (C') again in the diametric opposite R of P on (C').
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387. Converse Theorem. If two diametrically opposite points of one
circle are conjugate with respect to another circle, the two circles are
orthogonal.

By assumption, the polar of P for (C) passes through R (Fig. 104);
it is also perpendicular to PC (§ 375); hence this polar coincides with

R
Fic. 104

RS, i.e., the point S is the inverse of P with respect to (C) (§ 375);
hence the two circles are orthogonal (§ 369).
388. Definition. A triangle is said to be self-conjugate, or conjugate,
or self-polar, or polar with respect to a given circle, when each side of
the triangle is the polar of the opposite vertex.

It is readily seen that given the circle (0), an infinite number of
such triangles may be constructed. Let P be an arbitrary point in
the plane, and Q an arbitrary point on the polar p of P for (0). The
polar q of Q will pass through P (§ 379) and meet p in the third
vertex R of the required triangle PQR. The lines RQ, RP are the
polars of P, Q, by construction, and the pole of PQ coincides with R
(§ 384 a).
389. Remark. Of the three vertices of a polar triangle one lies inside
the circle, and the other two vertices lie outside the circle.

If the vertex P of the triangle PQR, polar to the circle (0), lies in-
side of (0), the other two vertices Q, R lie on the polar of P, and there-
fore outside of (0) (§ 378).

If P is taken outside of (0), the polar p of P cuts (0) in two points,
say, E and F (§ 378). The vertices Q, R are conjugate with respect
to (0), hence they are harmonically separated by E, F, and therefore
one of them lies inside and the other outside of (0).
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390. Theorem. If a triangle is polar with respect to a circle, the center
of the circle coincides with the orthocenter of the triangle.

If the triangle PQR is polar for the circle (0), the perpendiculars
from P, Q, R upon their polars QR, RP, PQ pass through the center
of (0) (§ 375); hence the proposition.
391. Problem. Given a triangle, find a circle with respect to which the
triangle is self-polar.

The center of the required circle must coincide with the orthocenter
H of the given triangle ABC (§ 390). The points A, B, C and the
feet D, E, F will be pairs of inverse points for the required circle; hence
the square of the radius of the required circle must be equal to each
of the products:

(1) HA HD, HB HE, HC HF,

and these three products are equal in any triangle (§ 177). But the
pairs of inverse points A, D; B, E; C, F must lie on the same side of
the center H of the required circle (§ 358), which condition is satisfied
only if ABC is obtuse-angled.

Thus the problem has no solution if ABC is acute-angled. If ABC
is obtuse-angled, the problem has a unique solution, the center of the
required circle (H) being the orthocenter H of ABC, the square of the
radius of (H) being equal to one of the products of (1).
392. Definition. The circle (H) (§ 391) is called the polar circle, or
the conjugate circle, of the triangle ABC.

EXERCISES

1. Show that the angle between two lines is equal to the angle which the segment
determined by their poles with respect to a given circle subtends at the center
of the circle.

2. Show that the locus of the point whose polars with respect to two given circles
are orthogonal is the circle described on the line of centers of the given circles
as diameter.

3. (a) TF, TQ are, the tangents at the extremities of a chord PQ of a circle. The
tangent at any point R of the circle meets PQ in S; prove that TR is the polar
of S. (b) Given two fixed points R, S, an arbitrary circle (0) is drawn tangent
to RS at R, and through S an arbitrary secant is drawn meeting (0) in P, Q.
If the tangents to (0) at P, Q meet RS in U, V, show that the sum of the recipro-
cals of RU and RV is constant, independently of the choice of (0) and of the
secant RPQ.
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4. If the vertices of a triangle (P) have for their polars, with respect to a circle (0),
the sides of the triangle (Q), show that the vertices of the triangle (Q) have for
their polars the sides of the triangle (P).

5. Through a given point to draw a line passing through the inaccessible center of
a given circle.

6. A variable circle passes through a fixed point C, and two fixed points H, K are
conjugate with respect to the circle; prove that the center of the circle lies on a
straight line perpendicular to the line joining C to the midpoint of HK.

7. On a given line to find two points which shall be equidistant from a given point
on the line, and conjugate with respect to a given circle.

8. Show that (a) the two poles of the common chord of two orthogonal circles with
respect to these circles coincide with the centers of the given circles; (b) if AB,
CD are two harmonic segments, the harmonic conjugate of the midpoint of AB
with respect to the pair C, D coincides with the harmonic conjugate of the mid-
point of CD with respect to the pair A, B.

9. Show that the polar circle of a triangle cuts the sides of the triangle harmon-
ically.

10. Prove that the pole of the line joining two conjugate points is the orthocenter
of the triangle determined by the two given points and the center of the circle.

U. If X is any point on the side BC of the triangle ABC, show that the circle on AX
as diameter is orthogonal to the polar circle of the triangle.

12. A line meets two given circles in two pairs of points. Find two points on this
line such that each shall be the point of intersection of the two polars of the
other with respect to the two given circles.

13. An infinite number of triangles may be drawn polar with respect to a given circle
and having a given point for a common vertex. Show that (a) the centroids of
these triangles lie on a straight line; (b) their orthocenter is fixed; (c) their cir-
cumcenters lie on a fixed line.

14. Given two chords AB, CD of a circle and their midpoints P, Q, prove that if
A B bisects the angle CPD, then CD bisects the angle AQB.

15. A point M of a given circle (0) is projected upon two rectangular diameters u,
v in the points A, B. Show that the line joining the projections upon u, v
of the pole of the line AB for (0) is tangent to the circle.

16. If P, Q are any two points and PM, QN are the perpendiculars from each
upon the polar of the other with respect to the same circle, center 0, we have
OP: PM = OQ: QN.

SUPPLEMENTARY EXERCISES

1. Show that (a) the two perpendiculars to the mediator of a side of a triangle at
the points where this mediator cuts the other two sides of the triangle pass
through vertices of the tangential triangle of the given triangle; (b) the line Al
meets the sides X Y, XZ in two points P, Q inverse with respect to the incircle
(I) = XYZ, and the perpendiculars to Al at P, Q pass through the vertices B,
C of the given triangle ABC.
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2. Show that the perpendiculars dropped from the orthocenter of a triangle upon
the lines joining the vertices to a given point meet the respectively opposite
sides of the triangle in three collinear points.

3. Show that the perpendiculars from the vertices of a triangle to the lines joining
the midpoints of the respectively opposite sides to the orthocenter of the triangle
meet these sides in three points of a straight line perpendicular to the Euler line
of the triangle.

4. Show that the perpendiculars to the internal bisectors of a triangle at the
incenter meet the respective sides in three points lying on a line perpendicular
to the line joining the incenter to the circumcenter of the triangle.

5. If A', B', C' are the traces of a transversal on the sides BC, CA, AB of a triangle
ABC whose orthocenter is H, prove that the perpendiculars from A, B, C upon
the lines HA', HB', HC', respectively, are concurrent in a point on the per-
pendicular from H to A'B'C'.

6. Show that the polars of a harmonic range form a harmonic pencil, and con-
versely.

7. Through the point of intersection of the tangents DB, DC to the circumcircle
(0) of the triangle ABC a parallel is drawn to the line touching (0) at A. If
this parallel meets AB, AC in E, F, show that D bisects EF.

8. Show that (a) if a circle (P) touches the sides AB, AC of the triangle ABC in
E, F, the line EF, the perpendicular from the center P of (P) to BC, and the
median of ABC issued from A are concurrent; (b) if X, Y, Z and X Ya, Z. are
the points of contact of the sides BC, CA, AB of the triangle ABC with the
incircle (I) and the encircle (I,), the points of intersection of YZ, Y.Z. with
radii IX, IaX respectively, are collinear with A and the midpoint A' of BC.

D. CENTERS OF SIMILITUDE

393. Converse Problem. Given a circle, a homothetic center, and a
homothetic ratio we constructed a circle homothetic, to the given circle
(§ 47). We found that the ratio of the radii of the two circles is equal
to the given homothetic ratio, and that the homothetic center divides
the line of centers in the given ratio.

Let us now consider the converse problem. Two circles (A), (B)
(Fig. 105) being given, to find a point M and a ratio k such that (B) shall
correspond to (A) in the homothecy (M, k).

From the properties just recalled it follows that k must be equal to
the ratio a:b of the radii a, b of the given circles (A), (B), and that the
point M must coincide with one of the points S, S' which divide the
line of centers AB of (A), (B) externally and internally in the ratio a: b.

On the other hand, it is clear that in either of the two homothecies
(S, a: b) and (S', -a: b) the circle which corresponds to (A) coincides
with (B). Hence: Two circles are homothetic in two and only two ways.



Ch. VIII, §§ 394-397] CENTERS OF SIMILITUDE

FIG. 106
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394. Definitions. The point S (§ 393) is called the external or direct
center of similitude, and S' the internal or indirect center of similitude
of the two circles.

The external center of similitude is collinear with the ends of any
two parallel radii directed in the same sense, or, what is the same thing,
lying on the same side of the line of centers of the two circles. The
internal center of similitude is collinear with the ends of any two par-
allel radii directed in opposite senses, or, what amounts to the same
thing, lying on opposite sides of the line of centers.

The centers of the two circles and the two centers of similitude of
the two circles are two pairs of harmonic points.
395. Remark. (a) If two circles are tangent to each other, their
point of contact is a center of similitude of the two circles.

(b) Two equal circles have only one center of similitude, namely,
the midpoint of their line of centers.

(c) If two circles are concentric, their common center is their only
center of similitude.
396. Theorem. (a) If two circles have external common tangents, these
tangents pass through the external center of similitude of the two circles
(Fig. 105).

(b) If two circles have internal common tangents, these tangents
pass through the internal center of similitude.

For in either case a common tangent to the two circles joins the
ends of two parallel radii.
397. Definitions. (a) Let a line through one of the centers of simili-
tude, say the external center S, of two circles (0), (0') (Fig. 106) meet
(0) in P, Q, and (0') in P', Q'. Since S is a homothetic center of the
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two circles, to the point P of (0) corresponds a point, say P', of (0')
such that the radii OF, O'P' are parallel. The points P, P are said
to be a pair of homologous points on the two circles, relative to the
homothetic center S. The points Q, Q' are also homologous on the
two circles, relative to S.

FIG. 106

Let U, V be any two points of (0) and U', V' their homologous
points on (0'), relative to the same center of similitude. The chords
UV, U'V' are said to be homologous chords of the two circles.

Two homologous chords are parallel, for they are corresponding
lines in two homothetic figures, unless they lie on a line passing
through the center of similitude, as, for instance, the chords PQ, P'Q'
(Fig. 106).

(b) Two points on two circles collinear with a center of similitude
of the circles and such that the radii passing through these points are
not parallel are said to be antihomologous points with respect to the
center of similitude considered. Thus P and Q', P and Q (Fig. 106)
are pairs of antihomologous points relative to S.

If X, Y are two points of (0), and Xa, Y. their antihomologous
points on (0') relative to the same center of similitude, the two chords
XY, XaYa are said to be antihomologous chords of the two circles, with
respect to the center of similitude considered.

If two circles intersect, two antihomologous points coincide in a
point common to the two circles.
398. Theorem. The product of the two segments determined by two pairs
of homologous points in which a secant through a center of similitude of
two circles cuts these circles, is constant.

We have (Fig. 106) :

SP SP'SP - SP' PP'
SA

__

SA'
__

SA - SA' AA'
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and, similarly:

hence, multiplying:
SQ:SB = QQ':BB';

SP.SQ _

187

Now the left-hand side of this equality is equal to unity; hence:

(1) AA'-BB'.

Since the right-hand side of (1) does not depend upon the choice of
the secant SPP', the proposition is proved.
399. Remark. If the circles have a common tangent passing through
S and touching the circles in T, T', we may consider the tangent STT'
as a limiting position of the secant SP, for which the two segments PP,
QQ' coincide in TT'; hence:

TT'2 = PP' QQ'.

This formula may also be derived directly, in the same manner as
formula (1).
400. Theorem. The product of the distances of a center of similitude
of two circles from two antihomologous points relative to the center of
similitude considered, is constant.

We have (Fig. 106) :

SP:SP' = SQ:SQ', or

On the other hand we have:

hence:

Since the left-hand side of this equality does not depend upon the
particular pair of antihomologous points P, Q' considered, the proposi-
tion is proved.
401. COROLLARY. Two pairs of antihomologous points relative to the
same center of similitude are cyclic, or collinear.
402. Definition. The circle having for diameter the segment deter-
mined by the centers of similitude of two circles is called the circle of
similitude of the two given circles.
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403. Theorem. The ratio of the distances of any point on the circle of
similitude of two given circles from the centers of these circles is equal to
the ratio of the radii of the given circles.

The centers of similitude divide the line of centers of the two given
circles in the ratio of the radii (§ 393); hence the proposition (locus 11,
§ 11).
404. COROLLARY. The circle of similitude of two intersecting circles
passes through the points common to the given circles.
405. Theorem. The six centers of similitude of three circles taken in
pairs lie by threes on four straight lines.

A

FIG. 107

Let X, Y, Z be the external centers of similitude of the pairs of given
circles (B, b), (C, c); (C, c), (A, a); (A, a), (B, b) and let X', Y', Z' be
the corresponding internal centers of similitude (Fig. 107). We have
(§ 393):

BX:CX = b:c, CY:AY = c:a, AZ:BZ = a:b;
hence:

and therefore X, Y, Z are collinear (§ 313).
In the same way it may be shown that the triads of points X, Y', Z';

Y, Z', X'; Z, X', Y' are collinear.
406. Definition. The four lines on which the six centers of similitude
are situated are called the axes of similitude, or the homothetic axes, of
the three given circles.
407. COROLLARY. A line joining two of the centers of similitude of
three circles taken in pairs passes through a third center of similitude.
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408. Definition. A circle is said to touch two given circles in like
manner, if both contacts are external, or both are internal. The con-
tacts are said to be alike.

A circle is said to touch two given circles in unlike manner, if one of
the contacts is internal and the other external. The contacts are said
to be unlike.
409. Theorem. If a circle touches two given circles, the points of con-
tact are antihomologous points on the two given circles.

The points of contact U, V of a circle (M) with the two given circles
(A), (B) are centers of similitude of the pairs of circles (M), (A) and
(M), (B) (§ 395 a); hence the line UV passes through a center of simili-
tude of the circles (A), (B) (§ 407).

The line UV passes through the external, or the internal, center of
similitude of (A), (B) according as the contacts U, V are alike, or
unlike (§ 408).

EXERCISES

1. Show that any circle through the centers of two given circles is orthogonal to
the circle of similitude of the two given circles.

2. Show that the tangents to two circles at a point of intersection of the circles
are equidistant from either center of similitude of the circles.

3. Show that (a) the centroid and the orthocenter of a triangle are the centers of
similitude of the circumcircle and the nine-point circle of the triangle; (b) the
incenter of a triangle is a center of similitude of the circumcircle and the circle
determined by the excenters of the triangle.

4. Through a given point to draw a secant so that the two chords determined on
it by two given circles shall have the same ratio as the radii of the circles.

5. The three pairs of circles (E), (F); (F), (D); (D), (E) touch each other in the
points A, B, C. The Lines BA, BC meet the circle (E) again in P, Q. Show that
PQ passes through the center E of (E) and is parallel to the line DF.

6. Show that the twelve centers of similtude of the four tritangent circles of a tri-
angle taken in pairs are (a) the six traces on the sides of the triangle of the
bisectors of the respectively opposite angles and (b) the vertices of the given
triangle each counted twice.

7. Show that the circle having for diameter an internal bisector of an angle of a
triangle is the circle of similitude of the incircle and the excircle relative to the
vertex considered. Find the circle of similitude of two excircles of a triangle.

8. The side BC of the triangle ABC touches the incircle (I) in X and the excirde
(I,) relative to BC in X,. Show that the line AX. passes through the diametric
opposite X' of X on (I). State a similar proposition about the diametric
opposite of X. on (I,).

9. (a) With the notations of the preceding exercise, show that if the line A7 meets
the altitude AD of ABC in P, then AP is equal to the inradius of ABC. State
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and prove a similar proposition for the excircle. (b) If the perpendicular from
A' to Al meets AD in Q, show, that the line QX is perpendicular to A'I.

10. With the same notations as in the preceding exercise, show that the point X. is
the external center of similitude of the incircle and the circle having the altitude
AD for diameter.

11. With the same notations as in the preceding exercise, show that the second
tangent from A' to (I), the tangent to (I) at X', and the line YZ joining the
points of contact of (I) with BA, CA, are concurrent. State and prove a similar
proposition for (I,).

12. With the same notations as in the preceding exercise, if the parallels to AX,,
through B, C meet the bisectors CI, BI in L, M, show that the line LM is parallel
to BC.

SUPPLEMENTARY EXERCISES

1. If PQ is a variable diameter of a circle, center A, and B, C are two fixed points
collinear with A, show that the locus of the point M = (CP, BQ) is a circle.

2. Construct a line whose distances from the vertices of a given triangle shall be
proportional to three given segments p, q, r.

3. AD, CF are the external common tangents of two circles ABC, DEF; BE is one
of the internal tangents. The diameters through B and E cut AC and DF
respectively in G and H. Show that GH bisects BE. Show that the proposi-
tion is valid if the terms "internal" and "external" are interchanged.

4. The circle (0') passes through the center 0 of the circle (0). The common
tangents of the two circles touch (0') in A, B. Show that AB is tangent to (0).

5. Show that the segment joining the ends of two parallel radii of two circles
subtends a constant angle at either point of intersection of the two circles.

E. THE POWER OF A POINT WITH RESPECT TO A CIRCLE

410. Theorem. The product of the distances of a given point, taken
either inside or outside a given circle, from any two points which are
collinear with the given point and lie on the circle, is a constant.

Let E, F be any two points on the given circle (0) collinear with the
given point L (Fig. 108 a and b), and A, B the ends of the diameter of
(0) passing through L. The two triangles LAF, LBE are equiangular
and therefore similar; hence:

LA:LF = LE:LB or LA LB.

Now the right-hand side of the last equality does not depend upon the
choice of the points E, F; the proposition is therefore proved.
411. Remark. When L lies outside of (0), and T is the point of contact
of a tangent from L to (0) (Fig. 108 b), it may readily be shown that

LT 2.
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F

FIG. 108a

F

Fta. 108b

412. Definition. The constant (§ 410) is called the power of the
point with respect to the circle, or, more briefly, for the circle.
413. CONSEQUENCE. If OA = OB = r, and LO = d, we have in
Fig. 108 a:

LA LB = (LO + OA) (OB - OL) = r2 - d2,

and in Fig. 108 b:

LA -LB = (LO + OA) (LO - OB) = d2 - r2.

If we agree to consider negative magnitudes, these two results may
be stated as follows: The power of a point with respect to a circle is
equal, both in magnitude and in sign, to the square of the distance of the
point from the center of the circle diminished by the square of the radius
of the circle.
414. Remark I. (a) The power of a point for a circle is positive, zero,
or negative according as the point lies outside, on, or inside the circle.

(b) When the point lies outside the circle, the square of the tangent
from the point to the circle is equal to the power of the point for the
circle.

(c) When the point lies inside the circle, the negative of the square
of half the chord perpendicular to the diameter passing through the
given point is equal to the power of the point for the circle.

(d) The power of the center of the circle for the circle is equal to
the negative of the square of the radius.
415. Remark II. If the point L and the center 0 of the circle (0)
remain fixed, while the radius r of (0) decreases so as to become zero,
the circle (0) becomes a point-circle, but the notion of the power of a
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point for a circle, as formulated in § 413, remains applicable to this
point-circle.
416. Theorem. (a) If two circles are orthogonal, the square of the radius
of either circle is equal to the power of the corresponding center with
respect to the other circle.

(b) Conversely. If the square of the radius of a circle is equal to the
power of its center with respect to a second circle, the two circles are or-
thogonal.

If the two given circles (A, a), (B, b) are orthogonal, we have (§ 363) :

AB2 = a2 + b2,
hence:

a2 = AB' - b2, b2 = AB' - a2,

which proves the direct proposition.
Conversely, if we have:

a2 = AB2 - b2, then AB2 = a2 -}- b2,

which proves the circles to be orthogonal (§ 363).
417. COROLLARY. If a point lies outside a given circle, the power of
the point with respect to the circle is equal to the square of the radius of the
circle having the given point for center and orthogonal to the given circle.
418. Definition. If the common chord of two intersecting circles
(A), (B) is a diameter of (B), the circle (B) is said to be bisected by
(A), and the circle (A) is said to bisect (B) (Fig. 109).

FIG. 109

419. Theorem. If a circle is bisected by a given circle, the square of the
radius of the bisected circle is equal to the negative of the power of the center
of the bisected circle with respect to the bisecting circle.
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If the circle (B) is bisected by the given circle (A), and E, F are the
ends of their common chord, we have (Fig. 109) :

AE2 = BE2 + AB2, or BE2 = AE2 - AB2 = - (AB2 - AE2),

which proves the proposition.
420. COROLLARY. Given a circle (A) and a point B, if B lies outside
of (A), B is the center of a circle orthogonal to (A); if B lies inside of (A),
B is the center of a circle bisected by (A). In the first case, the square of
the radius of the circle (B) is equal to the power of B for (A); in the
second case, the square of the radius of (B) is equal to the negative of the
power of B for (A).

EXERCISES

1. Show that (a) the locus of a point whose power for a given circle is constant, is a
circle concentric with the given circle; (b) the locus of the center of a circle, with
fixed radius, orthogonal to a given circle, is a circle concentric with the given circle.

2. Show that if the sum of the powers of the center of one of two given circles with
respect to these two circles is equal to zero, the two circles are orthogonal.

3. Show that (a) the locus of a point the sum of whose powers with respect to two
given circles is constant, is a circle having for center the midpoint of the line
of centers of the two given circles, and conversely; (b) the locus of a point the sum
of whose powers with respect to three given circles is constant, is a circle whose
center coincides with the centroid of the triangle formed by the centers of the
given circles, and conversely.

4. The square of the distance between a fixed point and a variable point is equal
to the sum (or the difference) of the powers of these two points with respect
to a fixed circle. Find the locus of the variable point.

5. If two points are inverse with respect to a circle, show that (a) the sum of their
powers for the circle is equal to the square of the distance between the points;
(b) the product of their powers for the circle is equal to the negative of the prod-
uct of the square of the radius of the circle and the square of the distance be-
tween the points.

6. Show that the sum of the reciprocals of the powers, with respect to a given circle,
of any two points inverse with respect to that circle is equal to the negative of
the reciprocal of the square of the radius.

7. Show that the power of the orthocenter of a triangle with respect to the cir-
cumcircle is equal to four times the power of the same point with respect to the
nine-point circle of the triangle.

8. Show that the sum of the powers of the vertices of a triangle for the nine-point
circle of the triangle is equal to one-fourth the sum of the squares of the sides of
the triangle.

9. If ABCD is a rectangle inscribed in a circle, center 0, and if PX, PX', PIT, PT
are the perpendiculars from any point P upon the sides AB, CD, AD, BC, prove
that PX PX' -}- PY .PY' is equal to the power of P with respect to the circle 0.
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SUPPLEMENTARY EXERCISES

1. A variable circle of fixed radius is orthogonal to a fixed circle. Show that the
ends of a diameter of fixed direction of the variable circle move on two fixed
circles.

2. Two points M, M' of a fixed line vary so that the product of their distances from
a fixed point of the line is constant. Show that the locus of the center of the
variable circle determined by M, M', and a fixed point in the plane is a straight
line.

3. The escribed circle (I.) of a triangle ABC meets the circumcircle (0) of ABC in
D, and I,D meets (0) in E. Show that IQE is equal to the circumdiameter of
ABC.

4. Given, in position, the circumcircle of a triangle, the trace of one internal bisector
on the opposite side, and the product of the other two sides, to construct the
triangle.

5. Show that the square of the radius of the polar circle of a triangle is equal to half
the power of the orthocenter of the triangle with respect to the circumcircle of the
triangle. (Hint. Use §§ 176, 389.)

6. Show that the sum of the powers, with respect to the circumcircle of a triangle,
of the symmetrics of the orthocenter with respect to the vertices of the triangle
is equal to the sum of the squares of the sides of the triangle.

7. Two unequal circles are tangent internally at A. The tangent to the smaller
circle at a point B meets the larger circle in C, D. Show that AB bisects the
angle CAD.

8. If the lines joining the vertices A, B, C of a triangle ABC to a point S meet the
respectively opposite sides in L, M, N, and the circle (LMN) meets these sides
again in L', M', N', show that the lines AL', BM', CN' are concurrent.

F. THE RADICAL AXIS OF TWO CIRCLES

421. Theorem. The locus of a point which moves so that its powers
with respect to two given circles are equal is a straight line perpendicular
to the line of centers of the given circles.

Given the circles (A, a), (B, b), if X is a point of the required locus,
we have, by assumption:

XA2 - a2 = XB2 - b2, or XA2 - XB2 = a2 - b2;

hence the proposition (locus 12, § 11).
422. Definition. The line (§ 421) is called the radical axis or, briefly,
the axis of the two circles.
423. COROLLARY. The powers, with respect to two given circles, of
a point common to these circles are equal, for both are zero (§ 414 a);
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hence: The radical axis of two intersecting circles is the line determined
by their points of intersection.
424. Remark. (a) The theorem (§ 421) remains valid, if a or b, or
both, are zero (§ 415), i.e., we may speak of the radical axis of a circle
and a point, or even of the radical axis of two points, in which case the
axis is identical with the mediator of the segment joining the two points.

(b) If two circles are tangent to each other, their radical axis is their
common tangent at their common point.

(c) Two concentric circles have no radical axis.
425. Theorem. The radical axes of three circles, with noncollinear
centers, taken in pairs are concurrent.

If the radical axis of the circles (A), (B) meets the radical axis of
the two circles (A), (C) in the point R, and Ra, Rb, R, are the powers
of R for (A), (B), (C), respectively, we have:

Ra = Rb and R. = R.; hence Rb = R,

i.e., the point R lies on the radical axis of the circles (B), (C), which
proves the proposition.
426. Problem. Construct the radical axis of two circles.

(a) If the two circles intersect, the line joining their common points
is their radical axis (§ 423).

(b) If the two given circles do not intersect, draw any convenient
circle (C) cutting both (A) and (B). Let the common chord of (A)
and (C) meet the common chord of (B) and (C) in the point R. The
radical axis of (A) and (B) passes through R (§ 425) and is perpendicu-
lar to the line of centers AB of these circles.

(c) If the circle (A) is reduced to a point A, draw any circle (C)
through A cutting (B). Let the tangent to (C) at A meet the common
chord of (C) and (B) in R. The perpendicular from R to the line AB
is the required radical axis.
427. Theorem. (a) The locus of a point from which tangents of equcl
length may be drawn to two circles is the radical axis of the two circles
(§§ 414 a, 421).

(b) If two circles have common tangents, the midpoints of these tan-
gents lie on the radical axis of the two circles.
428. Theorem. (a) A circle orthogonal to two given circles has its
center on the radical axis of the two given circles. '

(b) If a circle has its center on the radical axis of two circles and is
orthogonal to one of them, it is also orthogonal to the other circle.
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If a circle (M, m) is orthogonal to two circles (A), (B), the powers of
M for these circles are both equal to m2 (§ 416 a); hence M lies on the
radical axis of (A), (B).

If the circle (M, m) is orthogonal to the circle (A), the power of M
for (A) is equal to m2. Now if M lies on the radical axis of the circles
(A) and (B), the power of M for (B) is also equal to m2 (§ 416 a);
hence (M, m) is orthogonal to (B) (§ 416 b).
429. Theorem. The polars, with respect to two given circles, of a point
on their radical axis, intersect on the radical axis.

Let Q be the point of intersection of the polars, with respect to two
given circles (A), (B), of a point P of their radical axis u. The two
points P, Q are conjugate with respect to both (A) and (B); hence the
circle having PQ for diameter is orthogonal to (A), (B) (§ 387).
Consequently the midpoint 0 of PQ lies on u (§ 428). Thus the two
points P, 0 of the three collinear points P, 0, Q lie on the line u; hence
the same holds for the third point Q, which proves the proposition.

This proof is valid whether or not the given circles intersect. How-
ever, when the two circles have two points E, F in common, the propo-
sition is almost obvious, for both polars of P must pass through the
harmonic conjugate of P with respect to E, F.
430. COROLLARY. If from a point on the radical axis of two circles
the four tangents are drawn to these circles, the two chords joining the two
pairs of points of contact intersect on the radical axis of the two circles.

EXERCISES

1. If the squares of the radii of two circles are increased, or diminished, by the

same amount, show that the radical axis of the two circles remains unchanged.
2. If from a point on the radical axis of two circles secants are drawn for each of

the circles, show that the four points determined on the two circles are cyclic.
Conversely.

3. Show that the locus of a point the difference of whose powers with respect to
two given circles is constant is a straight line parallel to the radical axis of the
two circles.

4. In the plane of a given circle a second circle with a given radius is drawn so that
the radical axis of the two circles passes through a given fixed point. Show
that the locus of the center of the second circle is a circle.

5. Show that the orthic axis of a triangle is the radical axis of the circumcircle
and the nine-point circle of the triangle.

.6. If a point describes a line perpendicular to the line of centers of two given circles,
show that the point of intersection of the polars of the point for the two circles
describes a straight line parallel to the given line.
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7. (a) The common chord of a fixed circle and a variable circle passing through a
fixed point meets the tangent to the variable circle at the fixed point in a point
P. Show that the locus of P is a straight line. (b) Through a given point to
draw a line passing through the inaccessible center of a given circle.

8. Through a given point to draw the tangents to a given circle, the center of which
is inaccessible.

9. Show that an altitude of a triangle is the radical axis of the two circles having
for diameters the medians issued from the other two vertices of the triangle.

10. Show that the radical axis of a point and a circle is the mediator of the segment
determined by the given point and its inverse with respect to the circle.

11. If a circle is orthogonal to two given tangent circles, show that it touches the
line of centers of the two circles at their common point.

12. Show that the four tritangent circles of a triangle taken in pairs have for their
radical axes the bisectors of the angles of the medial triangle of the given tri-
angle.

13. Show that the radical axis of the two circles having for diameters the diagonals
AC, BD of a trapezoid ABCD passes through the point of intersection E of the
nonparallel sides BC, AD.

FIG. 110

431. Theorem. The locus of the center of a circle which bisects two given
circles is a straight line perpendicular to the line of centers of the given
circles.

If the circle (M, m) bisects the given circles (A, a), (B, b) (Fig. 110),
we have (§ 419):

hence:

(1)

MA2 + a2 = m2 = MB2 + b2;

MA2-MB2=b22-a2,
which proves the proposition (locus 12, § 11).
432. Definition. The line s determined by (1) (§ 431) is sometimes
referred to as the antiradical axis of the two given circles.
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433. Remark. For a point M' of the radical axis r of (A, a), (B, b)
we have:

(2) M'AI - M'B' = a2 - P.

The formulas (1) and (2) show that the lines s and r are symmetric
with respect to the midpoint of the line of centers AB.

It may also be observed that s is the radical axis of the two circles
(A, b), (B, a) (Fig. 110).
434. Theorem. Two antihomologous chords of two circles intersect on
the radical axis of the two circles.

If M, Q are two points of the circle (0), and N', P their anti-
homologous points on the circle (0') relative to the same center of
similitude of (0), (0'), the four points M, Q, N', P lie on a circle
(§ 401), say (S).

Now the chords MQ and N'P' are the radical axes of the two pairs
of circles (S), (0) and (S), (0'); hence MQ and N'P' intersect on the
radical axis of (0), (0') (§ 425).
435. Theorem. If two tangents to two circles intersect on the radical
axis of these circles, the points of contact are antihomologous points on the
given circles.

Let the tangents RE, RF (Fig. 111) to the two circles (A), (B) at
the points E, F meet in R on the radical axis of (A), (B), and let the

R

L
FIG. 111

lines EA, BF meet in L. The tangents RE, RF are equal (§ 427 a);
hence from the congruent right triangles EEL, RFL we have LE = LF.
Thus the circle drawn with L as center and LE = LF as radius is
tangent to the circles (A), (B) at the points E, F; hence the proposi-
tion (§ 409).
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436. Converse Theorem. If two points are antihomologous on two
circles, the tangents at these points to the circles intersect on the radical
axis of the circles.

Let the tangent at the point E to the circle (A) (Fig. 112) meet the
radical axis of the two circles (A), (B) in R. The circle (R, RE) is

E G

R

FIG. 112

orthogonal to both (A) and (B) (§§ 364 b, 428 b); hence the tangents
to (B) at the points of intersection F, G of (B) with (R, RE) pass
through R (§ 366). Thus the pairs of points E, F and E, G are anti-
homologous points on (A), (B), according to the direct theorem. But
the point E of (A) has only two antihomologous points on (B); hence
they coincide with F, G, and the proposition to be proved is valid for
the pairs of points E, F and E, G, as we have just seen.
437. COROLLARY. The four points in which two circles are cut by
a circle orthogonal to these circles determine three pairs of lines, of which
one pair meet on the radical axis, and the other two pairs meet in the two
centers of similitude of the two given circles.
438. Theorem. The inverses, with respect to two given circles, of a
point on their circle of similitude are symmetrical with respect to the
radical axis of the two circles.

If P, Q (Fig. 113) are the inverse points of a point W with respect
to the given circles (A, a), (B, b), we have:

a2, b2;

and if W is a point on the circle of similitude of the given circles, we
have (§ 403):

WA:WB = a:b.
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Dividing the first.two equalities and taking into account the third,
we obtain:

AP:BQ = AW:BW,

i.e., the lines AB, PQ are parallel.
Now the circle WPQ is orthogonal to both given circles (§ 369);

hence the perpendicular from the center 0 of WPQ upon AB is the

FIG. 113

Q

radical axis of the circles (A, a), (B, b), and since PQ is parallel to AB,
this perpendicular is also the mediator of the chord PQ of the circle
WPQ; hence the proposition.
439. COROLLARY. The two polars, with respect to two given circles, of
either center of similitude of these circles are symmetrical with respect to
the radical axis of the two circles.

EXERCISES

1. Show that the locus of the center of a circle which passes through a given point
and bisects a given circle is a straight line.

2. Through two given points to draw a circle bisecting a given circle.
3. Through a given point to draw a circle bisecting two given circles.
4. Show that the locus of the center of a circle which cuts one given circle orthog-

onally and bisects a second given circle is a straight line perpendicular to the line
of centers of the two given circles.

5. Draw a circle orthogonal to two given circles and bisecting a third given circle.
6. Draw a circle through a given point, bisecting a given circle, and orthogonal to a

second given circle.
7. Given two circles (0), (0'), show that the lines joining a point M of (0) to the

two centers of similitude of (0), (0') meet (0') in four points, two of which are
diametrically opposite on (0'), and the other two are collinear with a fixed point,
whatever the position of M.
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8. If a circle (L) is orthogonal to two given circles (A), (B), the radical axes of (L),
(A) and (L), (B) meet in the pole of the line AB with respect to (L) and cut the
line AB in the poles of the radical axis of (A), (B) with respect to these two
circles.

SUPPLEMENTARY EXERCISES

1. Show that the radical axis of two circles is equidistant from the radical axes of
the two circles with the circle having for diameter the line joining the centers of
these two circles.

2. If a line cuts two orthogonal circles in two pairs of harmonic points, show that
it passes through the center of one of the circles (or through the centers of both).

3. Two variable circles are tangent to each other and touch a given line in two fixed
points. Show that the locus of the midpoint of the second external common
tangent of the two circles is a circle.

4. Two 'variable circles whose radii have a constant ratio touch a given line in two
fixed points, on the same side of the line. Find the locus of the point of inter-
section of the other external common tangent with the radical axis of the two
circles.

5. A line antiparallel to the base BC of the triangle ABC meets AB, AC in P, Q,
and a parallel to BC meets AB, AC in E, F. Show that the radical axis of the
two circles BFQ, CEP remains fixed, when the line EF varies.

6. Given the points A, B on the circles (P), (Q), find a point C on the radical axis
r of these circles such that if the lines CA, CB meet the circles (P), (Q) again in
E, F, the line EF shall be perpendicular to the line r.

7. Let R, R' be the midpoints of the tangents OF, OP' from 0 to a given circle. If
the chord of contact of the tangents from a point T of RR' to the circle meets RR'
in U, show that TOU is a right angle.

G. COAXAL CIRCLES

440. Definition. A group of circles are said to form a coaxal pencil, if
the same fixed line is the radical axis of any two of the circles of the group.

The fixed line is called the radical axis, or, more briefly, the axis of
the coaxal pencil.
441. Determination of a Coaxal Pencil. In order to form a coaxal
pencil one circle (A) and the radical axis r may be taken arbitrarily.
Any circle (B) does or does not belong to the pencil depending on
whether the radical axis of (A), (B) does or does not coincide with r,
for if (C) is another circle such that the radical axis of (A), (C) coincides
with r, then the radical axis of (B), (C) coincides with r.

A coaxal pencil may also be determined by taking two circles (A),
(B) arbitrarily. The radical axis of these two circles plays the role of
radical axis of the pencil.
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Thus, summing up: A coaxal Pencil of circles is determined by one
circle and the radical axis, or by two circles.
442. Theorem. (a) A point on the radical axis of a coaxal pencil of
circles has the same power with respect to all the circles of the pencil.

(b) Conversely. If a point has equal powers with respect to the circles
of a coaxal pencil, it lies on the axis of the pencil.
443. Theorem. The centers of the circles of a coaxal pencil are collinear.

Let A be the center of a given circle of the pencil, and M the center
of any other circle of the pencil. The line AM is perpendicular to the
radical axis r of the pencil; hence the center M of any circle of the
pencil lies on the perpendicular from the point A to the line r.
444. Definition. The line containing the centers of the circles of a
coaxal pencil is called the line of centers of the pencil.
445. Discussion. (a) If the radical axis r of a coaxal pencil of circles
meets one of the circles in two points E, F, every circle of the pencil
must pass through these points, for the power of E (or F) for one of the
circles of the pencil being zero (§ 414 a), the same must hold for all
the circles of the pencil (§ 442 b).

The points E, F are called the basic points of the pencil, and the pen-
cil is said to be intersecting, or of the intersecting type.

(b) If r does not cut one circle of the pencil, it cuts none of them.
The pencil is said to be nonintersecting, or of the nonintersecting type.

(c) If r is tangent to one of the circles of the pencil, say, at T, every
circle of the pencil touches r at T, and we have a coaxal pencil of tan-
gent circles.

Note. In what follows the statements concerning coaxal pencils
will have reference to types (a) and (b) only.
446. Problem. With a given point as center to draw a circle belonging
to a given coaxal pencil.

It is assumed that the given center M lies on the line of centers c of
the given pencil. Otherwise the problem is impossible.

(a) In the case of an intersecting pencil of circles the required
circle (M) has for radius the segment joining M to one of the basic
points E, F of the pencil. This radius will be least when M coincides
with the trace 0 of the radical axis r on c, so that EF is a diameter of
the circle.

The problem has one and only one solution for any position of M on c.
(b) In the case of a nonintersecting pencil (Fig. 114) the axis r, and

therefore also the point 0, lies outside the circles of the pencil; hence
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it is possible to draw a tangent from 0 to any circle, say (A), of the
pencil. Since the point 0 belongs to r, the length t of this tangent is
equal to the length of the tangent from 0 to any other circle of the
pencil, and in particular to the required circle (M). Thus if m is the
radius of (M), we have:

(1) m2 = OM2 -12.

Thus the problem has one and only one solution if the distance OM
of the given center M from the point 0 is greater than I.
447. Definition. The points of intersection L, L', (Fig. 114) of the
line c with the circle (0, 1) are called the limiting points of the non-
intersecting pencil of circles.

L' 2
U C M

EIIIIE
FIG. 114

No circle of the pencil has its center inside the segment LL', and
every point M of c outside the segment LL' is the center of such a circle
(M).

It follows from the formula (1) (§ 446) that as M moves closer to L
(or L') the radius m of (M) approaches zero as a limit. For this reason
the points L, L' are sometimes said to be the point-circles of the pencil.
448. Theorem. (a) The limiting points of a coaxal pencil of circles are
inverse points with respect to every circle of the pencil.

(b) Conversely. If two points are inverse with respect to a system of
circles, the circles form a coaxal pencil.

If X, Y (Fig. 114) are the points of intersection of the line of centers
of the pencil with any circle of the pencil, we have (§ 446 b):

OL2 = 11 = OX -OY;

hence (LL'X Y) _ -1 (§ 347), which proves the proposition.
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If two points L, L' are inverse with respect to a system of circles,
the centers of the circles lie on the line LL', and if X, Y are the points
of intersection of LL' with any circle of the system, we have, by assump-
tion, for the midpoint 0 of LL':

OX OY = OL2;

hence the point 0 has equal powers with respect to all the circles of
the system. Thus the circles form a coaxal pencil whose radical axis
is the perpendicular to the line LL' at the point 0.
449. COROLLARY. (a) Any circle through the limiting points of a non-
intersecting pencil of coaxal circles is orthogonal to each circle of the
pencil.

(b) All the polars of a limiting point with respect to the circles of the
pencil coincide with the perpendicular to the line of centers at the other
limiting point of the pencil.
450. Theorem. A coaxal pencil of circles cannot have more than one
pair of limiting points.

Let (A), (B) be two circles determining a coaxal pencil, and let the
line of centers AB meet these two circles in the two pairs of points
X, Y and U, V (Fig. 114). If L, L' are a pair of limiting points of the
pencil, we must have:

(XYLL') =-1, (UVLL') =-1;

hence the pair of points L, L' is unique (§ 350).
451. Problem. Through a given point to draw a circle belonging to a
given coaxal pencil.

Through an arbitrary point M of the radical axis of the pencil draw
a secant meeting one of the circles of the pencil, say (A), in the points
E, F, and on the line MP joining M to the given point P construct the
point Q, on the same side of M as P, such that MP MQ = ME MF.
If the mediator of PQ meets the line of centers of the pencil in U, the
circle (U, UP) satisfies the conditions of the problem. Indeed, the
point M has equal powers with respect to the two circles (A) and
(U, UP); hence their radical axis coincides with the radical axis of the
pencil, and therefore (U, UP) belongs to the pencil.

The problem has one and only one solution.
The method of solution is applicable to a pencil of either type.

However, in the case of an intersecting pencil, the given point and
the two basic points of the pencil determine the required circle directly.
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452. Problem. Draw a circle tangent to a given line and belonging to
a given coaxal pencil of circles.

From the point of intersection M of the given line s with the radical
axis r of the pencil draw a tangent MT to any circle, say (A), of the
pencil, and on s lay off the segments MP = MP = MT. If the
perpendiculars PU, P'U' to s at the points P, P' meet the line of
centers c of the pencil in U, U', the two circles (U, UP), (U', U'P')
are the two solutions of the problem.

Consider the case when the line s is parallel to r; when the line s cuts
r between the basic points of an intersecting system of circles.

EXERCISES

1. Show. that (a) if there is one point whose powers with respect to a group of circles
with collinear centers are equal, the circles form a coaxal pencil; (b) if there are
two points the powers of each of which with respect to a group of circles are equal,
the circles form a coaxal pencil.

2. Show that the circles orthogonal to a given circle and having their centers on a
diameter of that circle form a coaxal pencil.

3. If two variable points P, P' are conjugate with respect to a given circle and lie
on a fixed line, show that the circle on PP' as diameter describes a coaxal pencil.

4. Show that the circles having their centers on a fixed line and bisecting a given
circle form a coaxal pencil.

5. A line touches two circles (A), (B) in the points T, T', and a circle (C) coaxal
with (A), (B) cuts TT' in E, F. Show that (EFTT') = -1.

6. Draw a circle of given radius and belonging to a given coaxal pencil.
7. Show that (a) the three circles determined by a given point P and the ends of the

altitudes of a given triangle have a second point P' in common; (b) if P coincides
with the centroid of the triangle, P' lies on the orthic axis; (c) if P lies on the
circumcircle, P' lies on the nine-point circle.

8. If a chord of a circle of a coaxal pencil passes through a limiting point of the
pencil, show that the projection of the chord upon the line of centers of the pencil
is a diameter of a circle of the pencil.

453. Theorem. If a circle has its center on the radical axis of a coaxal
pencil and is orthogonal to one of the circles of the pencil, it is orthogonal
to all the circles of the pencil.

Let (A) be a circle of a given coaxal pencil (U) and (P, p) a circle
orthogonal to (A) and having its center P on the radical axis r of (U).
The power of P for (A) is equal to p2 (§ 414 a), and since P lies on r,
the power of P for any circle of (U) is equal to p2 (§ 440 a); hence
(P, p) is orthogonal to any other circle of (U) (§ 414 b).
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454. COROLLARY. If a circle is orthogonal to two circles of a coaxal
pencil, it is orthogonal to all the circles of the pencil.
455. Theorem. The circles orthogonal to the circles of a coaxal pencil
form a coaxal pencil.

(a) The given pencil (U) is of the intersecting type. The radical
axis r of (U) (Fig. 115) passes through the center of any circle (P)

FIG. 115

orthogonal to the circles (A), (B), (C).... of (U) (§ 428); hence the
basic points of (U) are inverse with respect to (P) (§ 368); hence the
proposition (§ 448 b).

(b) The pencil (U) is of the nonintersecting type. If (P) is a circle
orthogonal to all the circles of (U), its center P lies on the radical
axis r of (U) (§ 428). On the other hand, r is the mediator of the seg-
ment LL' determined by the limiting points L, L' of (U) (§ 447); hence
a circle (P') may be drawn having P for center and passing through
L, L', which circle will be orthogonal to all the circles of (U) (§ 449).

Thus any circle (A) of (U) is orthogonal to both (P) and (P'). But
the point P is the center of only one circle orthogonal to (A); hence
(P) coincides with (P') and thus passes through L and L', which proves
the proposition.
456. Definition. The pencil of circles (W) formed by the circles
orthogonal to the circles of the given pencil (U) is said to be conjugate
to (U). Obviously, the pencil (U) is conjugate to (W).
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In two conjugate coaxal pencils every circle of one pencil is orthog-
onal to every circle of the other pencil.
457. Remark. Of two conjugate coaxal pencils one is of the inter-
secting, the other of the nonintersecting type, and the basic points of
one coincide with the limiting points of the other. Furthermore, the
radical axis and the line of centers of one pencil are, respectively, the
line of centers and the radical axis of the other.

Two conjugate coaxal pencils are determined by a pair of given
points.
458. Theorem. Three, or more, circles orthogonal to the same circle and
having their centers on a fixed line form a coaxal pencil.

Indeed, they form the conjugate pencil (W) of the coaxal pencil (U)
determined by the given circle (A) and the given line taken for radical
axis.
459. Problem. Through a given point to draw a circle orthogonal to the
circles of a given coaxal pencil.

The required circle belongs to the conjugate pencil (W) of the given
coaxal pencil (U) (§ 456), which reduces the problem to one already
solved (§ 451).
460. Theorem. The polars of a point with respect to the circles of a
coaxal pencil are concurrent.

If the polars of the given point P with respect to any two circles,
say (A) and (B), of the given pencil (U) meet in Q, the circle (PQ)
having PQ for diameter is orthogonal to both (A) and (B) (§ 387);
hence (PQ) is orthogonal to any other circle, say (C), of (U) (§ 454),
and therefore P,Q are conjugate with respect to (C); hence the
polar of P for (C) will pass through Q, which proves the proposition.
461. Remark. The circle (PQ) belongs to the conjugate pencil (W)
of (U) ; hence the point Q is the diametric opposite of the given point P
on the circle passing through P and belonging to the pencil (W).
This gives a construction of the point Q.

It may also be observed that since the circle (P) passing through P
and belonging to the given pencil (U) is orthogonal to (PQ)., the line
PQ is tangent to (P) at P, and Q is the symmetric of P with respect to
the point of intersection of this tangent with the radical axis of (U).
This gives another construction of the point Q.
462. Converse Theorem. If the polars of a given point with respect to
three, or more, circles with collinear centers are concurrent, the circles
are coaxal.
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If Q is the point common to the polars of the given point P with
respect to the circles (A), (B), (C).... these circles are orthogonal
to the circle having PQ for diameter (§ 387); hence the proposition
(§ 458).
463. Theorem. If two points are conjugate with respect to a circle, the
square of the distance between them is equal to the sum of their powers
with respect to the circle.

Let A, B be two points conjugate with respect to the given circle (M).
(a) The line AB cuts (M) in two points C, D. Let 0 be the mid-

point of AB. We have, both in magnitude and in sign:

(AO + OC) (AO + OD)
= AO' + AO(OC + OD) +

BC BD = (BO + OC) (BO + OD)
= B02 + BO(OC + OD) +

hence, adding and observing that:

A02 = BO2, and AO + BO = 0,
we obtain:

(1) AC. AD + BC-BD = 2 A02 +

Now A, B being conjugate for (M), they are separated harmoni-
cally by C, D; hence (1) becomes (§ 346):

(2) AC. AD + BC. BD = 2 AO' + 2 AO' = 4 A02 = AB2,

which proves the proposition.
(b) The line AB does not cut (M). Both points A, B lying outside

of (M), they may be taken as centers of two circles (A), (B) orthogonal
to (M). The points A, B being conjugate to (M), the circle (AB) on
AB as diameter is orthogonal to (M) (§ 387); hence the three circles
(A), (B), (AB) are coaxal (§ 458) and intersect, for the conjugate
pencil determined by (M) and the line AB as radical axis is noninter-
secting.

Thus the circle (A B) passes through the points of intersection of the
circles (A), (B); hence AB2 is equal to the sum of the squares of the
radii of (A), (B), i.e., to the powers of A, B for (M).
464. Converse Theorem. If the square of the distance between two
points is equal to the sum of the powers of these points with respect to a
given circle, the points are conjugate with respect to the circle.
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(a) The line joining the given points A, B cuts the given circle (M)
in two points C, D. By assumption, the formula (2) (§ 463) holds
for the points A, B, and the formula (1) is valid for any four collinear
points; hence we have, from (1) and (2),

2 A02 + 2 OC OD = AB2 = 4 A02, or OC -OD = A02,

i.e., A, B are separated harmonically by C, D (§ 347); hence the propo-
sition.

(b) The line AB does not cut (M). The square of AB is, by as-
sumption, equal to the sum of the squares of the radii of the circles
(A), (B) orthogonal to (M) and having A, B for centers; hence (A),
(B) are orthogonal to each other, and therefore the circle (AB) having
AB for diameter passes through their points of intersection, i.e., is
coaxal with them. Thus (AB) is orthogonal to (M) (§ 454); hence
the proposition (§ 386).
465. Remark. We have proved incidentally that two circles orthog-
onal to a third circle and having for their centers two points conjugate
with respect to that third circle are orthogonal to each other.
466. COROLLARY. If three circles are mutually orthogonal, the centers
of any two of them are conjugate with respect to the third circle.

EXERCISES

1. Draw a circle belonging to a given coaxal pencil and bisecting a given circle, not
belonging to the pencil.

2. Find the locus of the inverse of a given point with respect to the circles of a
coaxal pencil.

3. Show that a common tangent to two circles of a nonintersecting coaxal pencil
subtends a right angle at a limiting point of the pencil.

4. P is a point on the radical axis of a coaxal pencil of circles; PH is the tangent
from P to a circle of the pencil; prove that PH = PL, where Lisa limiting point
of the given pencil.

5. Show that the tangent from a limiting point to any circle of the coaxal pencil is
bisected by the radical axis of the pencil.

6. Show that the tangent from a limiting point to a circle of the coaxal pencil is
divided harmonically by every circle of the pencil.

7. If A, B and C, D are the points of intersection of two given nonintersecting
circles with their line of centers, L is one of their limiting points, and AL: LB =
CL: LD, show that the two circles are equal.

8. Through each vertex of a triangle a circle is drawn orthogonal to the circumcircle
of the triangle and having its center on the opposite side. Show that the three
circles are coaxal.
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9. The tangents at the vertices A, B, C to the circumcircle of an acute-angled tri-
angle ABC intersect BC, CA, AB in U, V, W respectively. Prove that the
circles pn A U, B V, CW as diameters are coaxal, having for radical axis the Euler
line of the triangle.

10. If the polar of a given point with respect to a variable circle is fixed, show that
the polar with respect to this circle of any other point passes through a fixed
point.

11. Given a coaxal pencil of circles, show that the line determined by a fixed point
on the radical axis and the pole of that axis with respect to a variable circle of
the pencil cuts that circle in two points belonging to a fixed circle.

467. Theorem. The radical axes of the circles of a coaxal pencil with
a circle not belonging to the pencil are concurrent, and their common point
lies on the radical axis of the pencil.

Let (A), (B) be any two circles of the given pencil (U), and (S) a
given circle not belonging to (U). The three radical axes of the three
pairs of circles:

(1) (S), (A); (A), (B); (S), (B)

have a point, say I, in common (§ 425). Now if (C) is any other circle
of (U), the three radical axes of the three pairs of circles:

(2) (S), (A) ; (A), (C) ; (S), (C)

have, in turn, a point, say I', in common. But the first two of the
axes in (2) are the same as those in (1); hence I' coincides with I,
which proves the proposition.
468. Remark. (a) If I lies outside of (S), this point is the center of
a circle orthogonal to (S) and belonging to the coaxal pencil (W) con-
jugate to the given pencil (U).

(b) The circle (S) has an analogous point J with respect to the
coaxal pencil (W) lying on the radical axis of (W), which line is identi-
cal with the line of centers of (U) (§ 457). The points I, J are con-
jugate with respect to (S) (§ 465).
469. Problem. Draw a circle belonging to a given coaxal pencil and
orthogonal to a given circle not belonging to the pencil.

Let (S) be the given circle, (U) the given pencil, c the line of centers
of (U), and (W) its conjugate pencil. The radical axis of (S) and any
circle (K) of (W) cuts the radical axis c of (W) in the point J. The
circle belonging to (U) and having J for center solves the problem
(§ 468 b).

The problem has one solution, if the point J falls outside of (S).
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If (S) belongs to the pencil (W), every circle of (U) is a solution of
the problem.
470. Problem. Draw a circle belonging to a given coaxal pencil and
tangent to a given circle not belonging to the pencil.

Let the radical axis of the given circle (S) and any circle of the given
pencil (U) meet the radical axis of (U) in I, and let T, T' be the
points of contact of (S) with the tangents from I to (S). If the lines
ST, ST' meet the line of centers of (U) in the points C, C, the circles
(C, CT), (C', C'T') are two solutions of the problem.

The problem has no solution, if I falls inside of (S).
As an exercise, consider the case when the center of (S) lies on the

line of centers of (U); when (S) belongs to (U).
471. Casey's Theorem. The power of a point with respect to a circle
diminished by the power of the same point with respect to a second circle
is equal, in magnitude and in sign, to twice the distance of the point from
the radical axis of the two circles (the beginning of the segment being on
the radical axis), multiplied by the line of centers of the circles (the begin-
ning being the center of the circle first considered).

N P

B O

1

M CA

FIG. 116

Let (A, a), (B, b) (Fig. 116) be the given circles, 0 the trace on AB
of their radical axis r, M, N the feet of the perpendiculars PM, PN
dropped from the given point P upon AB and r. If d2 is the required
difference, we have:

d2 = (PA2 - a2) - (PB2 - b2) = (PA2 - PB2) - (a2 - b2j.
From the right triangles PMA, PMB we have:

PA2 = PM2 + AM2, PB2 = PM2 + BM2;
hence:

PA2 - PB2 =-AM2 - BM2.
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The powers of 0 for the two circles being equal, we have:

OA2 - a2 = OBI - b2, or OA2 - OBI = a2 - P.
Thus we have:

d2 = (AM2 - BM2) - (OA2 - OBI).

From this relation we obtain successively, both in magnitude and
in sign:

d2 = (AM + MB) (AM - MB) - (AO + OB) (AO - OB)
= AB(AM - MB - AO + OB)
= AB[(AO+OM) - (MO+OB) - AO+OB]
= 2 AB -OM = 2 AB-NP.

472. COROLLARY. The power, with respect to a circle, of a point on
a second circle is equal, both in magnitude and in sign, to twice the dis-
tance of the point from the radical axis of the two circles (the beginning
of the segment being the point on the radical axis), multiplied by the line
of centers of the two circles (the beginning being the center of the circle with
respect to which the power is taken).

For the power, with respect to a circle, of a point on the circle is zero.
473. Theorem. If a circle is coaxal with two given circles, the powers
of any point of this circle with respect to the given circles are in a constant
ratio.

This ratio is equal, both in magnitude and in sign, to the ratio of the
distances of the center of the circle from the centers of the first and the
second given circles.

Let P be any point on the circle (S) coaxal with two given circles
(A), (B), and let u, v be the powers of P for (A), (B). If N is the foot
of the perpendicular from P upon the radical axis of the pencil (A), (B),
(S), we have, both in magnitude and in sign (§ 472) :

hence:

u:v = AS:BS,

which ratio is independent of the position of P on (S).
474. Remark. The ratio u: v (§ 473) is negative, or positive, according
as the center S lies on, or outside, the segment AB.
475. Converse Theorem. The locus of a point the ratio of whose powers
with respect to two given circles is constant, both in magnitude and in sign,
is a circle coaxal with the given circles.
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If P is a point of the locus, the circle (S) passing through P and
coaxal with the given cirdes (A), (B) (§ 451) will have for its center the
point S which divides the line of centers AB of the given circles in the
given ratio, internally, if the ratio is negative, and externally, if that
ratio is positive (§ 474). Thus the position of the center S, and
therefore of the circle (S), is uniquely determined by the given ratio,
independently of the position of P; hence the proposition.
476. Remark. If the ratio is given only in magnitude (§ 475), the
locus of P consists of two circles coaxal with the given circles and
having for centers the two points which divide the line of cen-
ters of the two given circles internally and externally in the given
ratio.
477. Theorem. The circle of similitude of two given circles is coaxal
with these circles.

If P is a point of the circle of similitude of the two given circles
(A, a), (B, b), we have:

PA : PB = a: b, or (PA2 - a2) : (PB2 --- b2) = a2: W.

Thus the ratio of the powers of any point of the circle of similitude of
the two given circles with respect to these circles is constant; hence the
proposition (§ 475).
478. COROLLARY. One of the two centers of similitude of two noninter-
secting circles lies between the limiting points of the two circles.

Indeed, the limiting points L, L' of two circles (A), (B) are inverse
points with respect to any circle coaxal with (A), (B) (§ 448 a), and in
particular with respect to the circle of similitude of (A), (B) (§ 477);
hence the centers of similitude S, S' of (A), (B) are separated har-
monically by the points L, L'.
479. Remark I. If from a point on the circle of similitude of two circles
tangents can be drawn to these circles, the ratio of these tangents is equal
to the ratio of the radii of the circles.
480. Remark M. Two circles subtend equal angles at any point of their
circle of similitude.

For if MP, MQ (Fig. 117) are the tangents to the circles (A, a),
(B, b) from a point M of their circle of similitude, we have (§ 479):

MP:MQ = a:b;

hence the two right triangles MPA, MQB are similar.
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FIG. 117

481. Theorem. The circle of similitude of two circles is the only circle
which is coaxal with these circles and divides their line of centers har-
monically.

The circles having for diameters the segments harmonic to the seg-
ment AB determined by the centers A, B of two given circles (A), (B)
form a coaxal pencil (X) having the points A, B for limiting points
(§ 448 b), and the circle of similitude (S) of (A), (B) belongs to (X).

On the other hand (S) belongs to the coaxal pencil (Z) determined
by (A) and (B) (§ 477). Now the two pencils (X) and (Z) cannot
have more than one circle in common (§ 441); hence the proposition.
482. Definition. The two circles (S), (S') coaxal with two given
,circles (A), (B) and having for centers the centers of similitude of
the two given circles are called the circles of antisimilitude of the given
circles.

The external, or direct, center of similitude is the center of the
external, or direct, circle of antisimilitude, and the internal, or indirect,
center of similitude is the center of the internal, or indirect, circle of
antisimilitude.

If the two given circles intersect, both circles of antisimilitude
are real. If the given circles do not intersect, only one of the circles
of antisimilitude is real (§ 478).
483. Theorem. The two circles of antisimilitude of two intersecting
circles are orthogonal.

The two circles of antisimilitude (S), (S') and the circle of similitude
(SS') of the two given intersecting circles (A), (B) are coaxal, for the
three circles belong to the pencil of circles determined by (A), (B)
(§§ 482, 477); hence the proposition (§ 365 b).
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484. Theorem. The locus of a point M whose powers with respect to two
given circles are equal in magnitude and opposite in sign is a circle coaxal
with the given circles.

The ratio of the powers of the variable point M for the two given
circles is constant, namely, equal to -1; hence the proposition (§ 475).
485. Definition. The locus of M (§ 484) is called the radical circle of
the two given circles.
486. Remark. If (A, a), (B, b) are the given circles, we have, for any
point M of the radical circle (L) :

MA2 - a2 = - (MB2 - b2), or MA2 + MB2 = a2 + b2;

hence (locus 10, § 11) the center L of (L) is the midpoint of AB, and
the square of the radius of (L) is given by the formula:

(1) 1 (a2 + b2) - 4 AB2, or a (a2 -+ - b2 - a AB2).

487. Discussion. (a) If the given circles intersect, their radical
circle is always real, for it is always possible to draw a circle coaxal
with them and having for center the midpoint of their line of centers.

(b) If the given circles (A, a), (B, b) do not intersect, the radical
circle (L) will be real if the midpoint L of AB falls outside the segment
determined by the limiting points of the coaxal pencil determined by
the given circles. This will always be the case, if A, B he on the same
side of the radical axis; it may or may not be the case, if A, B lie on
opposite sides of the radical axis.

Another test is furnished by the formula (1) (§ 486). The radical
circle will be a real circle, a point-circle, or imaginary, depending on
whether a2 + b2 - i AB2 is positive, zero, or negative.

(c) If a2 + b2 = A B2, the square of the radius of (L) is equal to
AB2, i.e., if the given circles are orthogonal, their radical circle

coincides with the circle having their line of centers for diameter.
488. Theorem. If the two chords determined on a transversal by two
given circles are harmonic, the midpoints of these chords lie on the radical
circle of the given circles. Conversely.

If CD, EF are the two chords determined by the circles (A), (B) on
the same transversal, and P is the midpoint of CD, the powers of P
for the circles (A), (B) are, respectively:

PC PD = - PC2, PE PF.
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Now if (CDEF) _ -1, we have (§ 346) :

(1) PC2 =

Similarly for the midpoint of EF. Hence the proposition (§ 484).
Conversely, if P lies on the radical circle of (A), (B), we have, by

definition:

-PC2 = - PE PF, or PC2 = PE PF,

and the two chords CD, EF are harmonic (§ 347).
489. COROLLARY. Through a given point M of the radical circle of two
given circles pass, in general, two transversals on which the given circles
determine two harmonic chords, namely, the two transversals which are
perpendicular at M to the lines joining M to the centers of the given circles.

It should be observed, however, that, assuming the circle (L) is real,
the perpendiculars at M may always be constructed, but they may not
cut the given circles in real points.
490. Remark. A transversal on which two orthogonal circles deter-
mine two harmonic chords passes through the center of, at least, one
circle.

For if the given circles are orthogonal, their centers A, B lie on
their radical circle (L) (§ 487 c), and if M is any point on (L), the per-
pendicular to AM will pass through the diametric opposite B of A
on (L).

EXERCISES

1. A variable circle APQ passes through the given point A and cuts a given line in
P, Q. The power of A with respect to a second variable circle (M) passing
through P, Q is constant. Show that the distance between the centers of the
two variable circles is constant.

2. A variable circle passes through a fixed point and has its center on a fixed circle.
Show that the radical axis of the variable circle and the fixed circle is tangent to
a fixed circle.

3. Find the locus of a point such that the length of the tangent from it to a given
circle is the mean proportional between a given segment and the distance of the
point from a given line.

4. Prove that the circle on an internal bisector of a triangle as diameter is coaxal
with the incircle and the excircle whose center lies on the bisector considered.
State and prove an analogous proposition for an external bisector.

5. Show that the circle having for ends of a diameter the centroid and the ortho-
center of a triangle is coaxal with the circumcircle and the nine-point circle of
the triangle.
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6. If a line through a point of intersection of two circles meets the circles again in
the points P, Q, show that the midpoint of PQ lies on the radical circle of the
given circles.

7. Through a given point in the plane to draw a transversal so that the chords
determined on it by two given circles shall be harmonic.

8. Draw a line parallel to a given line and cutting two given circles in two pairs
of harmonic points.

9. Through the common point 0 of three circles (P), (Q), (R) to draw a secant
meeting the circles in the points A, B, C so that the ratio AB: AC shall have a
given value.

10. Given four points in the plane, show that the sum of the inverses of the powers
of each of these points with respect to the circle determined by the remaining
three points is zero.

11. Show that (a) the power of a point with respect to the radical circle of two given
circles is equal to one-half the sum of the powers of the point with respect to the
two given circles; (b) the sum of the powers of a point with respect to three given
circles is equal to the sum of the powers of the same point with respect to the
three radical circles of the given circles taken in pairs.

H. THREE CIRCLES

491. Problem. Construct a circle orthogonal to three given circles with
noncollinear centers.

The center R of the required circle necessarily lies on the three
radical axes of the three given circles (A), (B), (C) taken in pairs
(§ 428); hence R is the point common to these three radical axes (§ 425).

The circle (R) having R for center and orthogonal to one of the circles
(A), (B), (C) constitutes the solution of the problem.
492. Definition. The point R (§ 491) is called the radical center or
the orthogonal center of the three circles.

The circle (R) is called the orthogonal circle of the three given circles.
493. Remark. The radical center R has equal powers with respect to
the three given circles and is always a real point.

The circle (R) exists only if the power of R for the given circles is
positive, or, what is the same thing, if R lies outside the given circles.
494. Theorem. The orthogonal circle of three given circles is the locus
of the point whose polars with respect to the three given circles are con-
current.

If the polars of the point P with respect to the three given circles
meet in Q, the circle (PQ) on PQ as diameter is orthogonal to each of the
given circles (§ 387); hence (PQ) coincides with the orthogonal circle
(R) of the given circles.
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Observe that Q also lies on the orthogonal circle (R), and that the
points P, Q are diametrically opposite on (R).
495. Theorem. If (0) is the circle passing through the centers A, B, C
of the three given circles (A, a), (B, b), (C, c), and (R) is the orthogonal
circle of these three circles, the distances of A, B, C from the radical axis
of the circles (R) and (0) are proportional to a2, b2, c2.

Indeed, if p is the distance of A from the radical axis m, the quantity
2 is equal to the difference of the powers of A for (R) and (0)
(§ 471). Now these powers are respectively equal to a2 and zero;
hence:

a2 = 2 or p:a2 = 1:2R0.

The right-hand side of this equality being constant, the proposition is
proved.
496. Theorem. The three circles of similitude of three given circles
taken in pairs are coaxal.

Given the circles (A), (B), (C), the circle of similitude (Sab) of the
two circles (A), (B) is coaxal with them (§ 477); hence (Sab) is or-
thogonal to the orthogonal circle (R) of the circles (A), (B), (C)
(§ 454).

Again the centers A, B of (A), (B) divide a diameter of (Sab) har-
monically (§ 394); hence A, B are inverse points with respect to (Sb),
and the circle (0) passing through the centers A, B, C of the given
circles is orthogonal to (Sab).

Similarly for the circles of similitude (Sb,), (S,a) of the pairs of circles
(B), (C) and (C), (A).

Thus the three circles of similitude are orthogonal to the two circles
(R) and (0); hence the proposition (§ 455).
497. Remark. The proposition remains valid, if the circle (R) does
not exist. For the above reasoning shows that the point R has equal
powers with respect to the three circles of similitude, and the same
holds for the center 0 of (0); hence the line OR is the radical axis of any
two of three circles of similitude considered.
498. COROLLARY. The centers of the three circles of similitude (Sab),
(Su), (S,:6) (§ 496) lie on the radical axis of the circles (R), (0).
499. Definition. If the coaxal pencil formed by the three circles of
similitude of three given circles (§496) has two basic points, these
points are referred to as the isodynamic points of the three given circles.

The isodynamic points of three circles are the limiting points of the
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coaxal pencil determined by the orthogonal circle of the three given
circles and the circle passing through the three centers of the given
circles (§ 457).
500. Theorem. The three inverses, with respect to three given circles,
of an isodynamic point of these circles are equidistant from the radical
center of the given circles.

Let W (Fig. 118) be the isodynamic point of the three circles (A),
(B), (C), R being their radical center, and 0 the center of the circle
(0) = ABC.

FiG. 118

The inverses P,Q of W for (A), (B) lie on a parallel to AB (§ 438);
hence the midpoints L, M of PQ, AB are collinear with W. Now
the mediators of PQ, AB pass respectively through R (§ 438) and 0;
hence:

WP: WA = WL:WM = WR: WO;

consequently the lines PR, AO are parallel, and we have:

RP:OA=WR:WO.

The last three terms of this proportion do not depend upon the circle
(A) considered; hence the proposition.
501. Remark. The point W divides the line of centers RO of the
circle (0) and the circle (R') determined by the inverses of W for the
three given circles in the ratio of the radii OA, RP of the circles (0),
(R'); hence W is a center of similitude of these two circles.
502. Theorem. If the radii of three variable circles with fixed centers
vary so as to remain proportional, the orthogonal circle of the three
variable circles describes a coaxal pencil.
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The ratio of the radii of any two of the three variable circles being
constant, the centers of similitude of these two circles are fixed; hence
the same is true of their circle of similitude. Now the three circles of
similitude are coaxal and are orthogonal to the orthogonal circle (R)
of the given circles (§ 496); hence (R) describes the coaxal pencil con-
jugate to the pencil determined by the circles of similitude considered.
503. Theorem. With three noncollinear given points as centers it is
possible to describe three circles so that a given line shall be an axis of
similitude of the three circles.

Let Y, Z be the traces of the given line on the sides AC, AB of the
triangle ABC determined by the given points A, B, C; let Y', Z' be
the harmonic conjugates of Y, Z with respect to the pairs of points
CA, AB; and let (YY'), (ZZ') be the circles on YY', ZZ' as diameters.

The circle (A), of arbitrary radius, having A for center, and the
circles (B), (C) having B, C for centers and coaxal, respectively, with
(A), (ZZ') and (A), (YY'), are three circles having the desired
property.

Indeed, the circle (ZZ') is coaxal with (A), (B) and divides their
line of centers AB harmonically; hence (ZZ') is the circle of similitude
of (A), (B) (§ 481), and Z is a center of similitude of these two circles.

Similarly Y is a center of similitude of the two circles (A), (C);
hence the proposition (§ 407).

It should be observed that the trace X of the given line YZ on BC is
a center of similitude of the two circles (B), (C), and that the circle
of similitude (XX') of (B), (C) is determined by X and the harmonic
conjugate X' of X for the points B, C.
504. Remark. The radius of (A) was taken arbitrarily; hence it is
possible to describe the three circles in an infinite number of ways, the
radii of the various sets of circles being proportional.
505. Theorem. Given three circles (A), (B), (C), if (D), (E) are the
radical circles of (A), (B) and (A), (C), respectively, the radical axis of
the circles (D), (E) coincides with the radical axis of the circles (B), (C).

The circles (D), (E) are, respectively, coaxal with the pairs of circles
(A), (B) and (A), (C); hence the powers with respect to (D), (E) of
the radical center R of the three given circles are equal, for these
powers are equal to the power of R for (A). Thus the radical axes of
the two pairs of circles (D), (E) and (B), (C) are the perpendiculars
from R upon the lines DE, BC. But DE and BC are parallel, for D, E
are the midpoints of AB, AC (§ 486); hence the proposition.
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1. If the squares of the radii of three given circles are increased, or diminished, by
equal amounts, show that the radical center of the three circles will remain
fixed.

2. Show that the radical center of the three circles having for diameters the three
sides of a triangle coincides with the orthocenter of the triangle.

3. Show that the orthocenter of a triangle ABC is the radical center of the three
circles having for diameters the three cevians AP, BQ, CR.

4. Draw a circle so that the tangents drawn to it from three given points shall have
given lengths

5. Find a point which shall be concyclic with its three inverses with respect to three
given circles.

6. Given three nonintersecting circles, show that the three pairs of limiting points
determined by the three circles taken two at a time are concyclic.

7. Show that the antiradical axes of three circles taken two at a time are con-
current.

& If each of three given circles is tangent to the remaining two, show that their
orthogonal circle is a tritangent circle of the triangle determined by their centers.

9. Given three circles, to construct a fourth circle such that its radical axes with
the given circles shall pass, respectively, through three given points.

10. Given three circles with noncollinear centers, show that any three of their six
circles of antisimilitude are coaxal, if their centers are collinear.

11. Show that the distances of an isodynamic point of three circles from the centers
of these circles are proportional to the radii of the respective circles.

U. Given the circles (A), (B), (C), a line parallel to BC meets AS, AC in D, E. If
(D), (E) are the circles with D, E for centers and coaxal, respectively, with the
pairs of circles (A), (B); (A), (C), show that the radical axis of (D), (E) coincides
with the radical axis of (B), (C).

13. Show that (a) if on the three sides of a triangle are marked three pairs of points
so that any two of these three pairs are concyclic, the three pairs of points lie on
the same circle; (b) if the three pairs of points A', A"; B', B"; C', C" are marked
on the three sides BC, CA, AB of the triangle ABC so that:

BA'.BA" - BC'-BC", CA'-CA",

the three pairs of points are concyclic.

SUPPLEMENTARY EXERCISES

1. Show that the foot of the perpendicular from the orthocenter of a triangle upon
the line joining a vertex to the point of intersection of the opposite side with
the corresponding side of the orthic triangle lies on the circumcircle of the
triangle.

2. Construct a triangle given, in position, the orthocenter, one vertex, and the
point of intersection of the opposite side with the corresponding side of the
orthic triangle.
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3. Show that the anticenter of a cyclic quadrilateral has equal powers with respect
to the circles having for diameters a pair of opposite sides of the quadrilateral.

4. Given three circles with noncollinear centers, show that the three circles passing
through a given point and coaxal with the given circles taken in pairs have a
second point in common.

S. Any four points A, B, C, D are taken on a circle; AC, BD intersect in E; AB,
CD intersect in F; AD, BC intersect in G. Show that the circumcircles of the
triangles EAB, ECD cut the lines AD, BC in four points lying on a fourth circle;
if these four circles be taken three at a time, show that the radical centers of the
systems so formed will be the vertices of a parallelogram.

6. Given three circles, draw a circle which shall touch one of the given circles, be
orthogonal to the second, and bisect the third.

7. A transversal DEF cuts the sides BC, CA, AB of a triangle ABC externally in
D, E, F. The three circles having these points for centers and orthogonal to the
circumcircle of ABC cut the respective sides externally in P, Q, R and internally
in P', Q', R'. Show that the triads of points P, Q, R; P, Q', R'; P', Q, R'; P',
Q', R are collinear, and that the triads of lines AP', BQ', CR'; AP', BQ, CR;
AP, BQ', CR; AP, BQ, CR' are concurrent.

1. THE PROBLEM OF APOLLONIUS

506. Ten Problems. Consider the problem of determining a circle
subject to three conditions taken from among the following: The
circle is to pass through one or more points, P; to be tangent to one or
more lines, L; to be tangent to one or more circles, (C). This question
gives rise to the following ten problems, symbolically represented by
(1) PPP, (2) PPL, (3) PLL, (4) LLL, (5) PPC, (6) PLC, (7) PCC,
(8) LLC, (9) LCC, (10) CCC.
507. Problem I. Construct a circle passing through three given points
(PPP).
508. Problem II. Construct a circle passing through two given points.
and tangent to a given line (PPL) (§ 452).

OTHERWISE. Let the line AB joining the given points A, B meet
the given line t in I, and let t touch the required circle ABT in T
(Fig. 119). If B' is the symmetric of B with respect to t, we have the
following equalities among angles:

L ATB' = ATB + BTB' = ATB +BTI + BTI
= ATB + BAT + BTI = IBT + BTI
= 180° - BIT.

Thus the known segment AB' subtends at the point T a known angle;
hence T may be determined (locus 7, § 11).
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FIG. 119

The symmetric of T with respect to I yields another solution of the
problem.
509. Problem M. Construct a circle tangent to two given lines and
passing through a given point (PLL).

The required circle also passes through the symmetric P of P with
respect to the bisector of the angle formed by the given lines, and
the problem reduces to the preceding one.
510. Problem IV. Construct a circle tangent to three given lines (LLL)
(§ 117).

Consider the case when two of the lines, or all three, are parallel.
511. Problem V. Draw a circle passing through two given points and
tangent to a given circle (PPC) (§ 470).
512. Problem VI. Draw a circle passing through a given point, tangent
to a given line and to a given circle (PLC).

Let the required circle (1) (Fig. 120) passing through the given
point B touch the given circle (A) in L and the given line sin D. The
point L being a center of similitude of the two circles, the line LD
passes through one end, say E, of the diameter EF of (A) parallel to
the radius ID of (I). The point E is thus known, for EF is the
diameter of (A) perpendicular to the line s.

Let EF meet s in G. The diameter EF subtends a right angle at L;
hence DF subtends right angles at both L and G, and therefore LFGD
is a cyclic quadrilateral. Thus we have:

EFEG = ELED = EBEC,
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and the segment EC may be constructed as a fourth proportional, which
in turn locates the point C on the line EB and reduces the problem to
the case (PPL), which gives two solutions of the proposed problem.

E

FIG. 120

The point F may be made to play the same role as E, and we obtain
two other solutions - in all, four solutions.
513. Problem VII. Draw a circle passing through a given point and
tangent to two given circles (PCC).

The points of contact M, N of the required circle (0) (Fig. 121) with
the given circles (C), (D) are collinear with a center of similitude S of

FIG. 121

(C), (D) (§ 409); hence if the line SA joining S to the given point A
on (0) meets (0) again in B, we have:

SA SB =

Now the value of the right-hand side of this equality is known (§ 400);
hence B may be determined on the given line SA, and the problem
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reduced to the case (PPC), which gives two solutions of the proposed
problem.

By making use of the other center of similitude S' of (C), (D) we
obtain two other solutions - in all, four solutions.
514. Problem VIII. Draw a circle tangent to two given lines and to a
given circle (LLC).

Let a, b be the given lines, (C, c) the given circle, and (0, r) the re-
quired circle. The circle (0, r + c) (Fig. 122) will pass through C
and through the symmetric C' of C with respect to the bisector t of the
angle formed by a, b, for 0 lies on t. Moreover, (0, r + c) will be

FIG. 122

tangent to the line a' drawn parallel to a at a distance c from a. Thus
the construction of (0, r + c) is reduced to the case (PPL), and the
center 0 of (0, r) is determined.

The problem (PPL) has two solutions. Now the symmetric C' of
C may be taken with respect to either of the bisectors t, 1' of the angles
formed by a, b, and the parallel a' to a may be drawn on either side of
a; hence (LLC) may have eight solutions.
515. Problem IX. Draw a circle tangent to a given line and to two given
circles (LCC).

Let p be the given line, (A, a), (B, b) the given circles, and (0, r)
the required circle (Fig. 123). If a is smaller than b, the circle
(0, r + a) will pass through A, touch the circle (B, b - a), and be
tangent to the he p' drawn parallel to p at a distance a. Thus the
problem of drawing (0, r + a) is reduced to the case (PLC), and the
center 0 of (0, r) is determined.
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Since (PLC) has four solutions, and the line p' may be drawn on
either side of p, the problem (LCC) may have eight solutions.

FIG. 123

516. Problem X. The Problem of Apollonius. Draw a circle tangent
to three given circles (CCC).

Let (A, a), (B, b), (C, c) be the given circles, and (0, r) the required
circle. If a is the smallest of the three given radii, the circle (0, r + a)
will pass through A and touch the circles (B, b - a), (C, c - a).
Thus the construction of (0, r + a) is reduced to the case (PCC), and
0 is determined. The problem may have eight solutions.
517. Problem. On a given line to find a point the sum (or the difference)
of whose distances from two given points shall have a given length.

FIG. 124

Let p be the given line, A, B the given points, m the given length,
and M the required point on p. The circle (M, MB) (Fig. 124) passes
through the symmetric Br of B with respect to p and is tangent to the
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circle (A, m); hence (M, MB) may be constructed (§ 511), and M is
thus determined.

EXERCISES

1. Given a point A outside a given circle (0), construct a circle touching the line
OA and the circle (0) and having its center on a tangent from A to (0).

2. Draw a circle so that the chords which it determines in three given circles shall
have given lengths.

3. Construct a triangle given the base, the altitude to the base, and the sum (or
the difference) of the other two sides.

4. Construct a triangle given the base, the sum (or the difference) of the other two
sides, and the angle which the median makes with the base.

5. Construct a triangle given the base, the corresponding altitude, and the sum of
the two medians to the other two sides (a, ha, ,ns + m,).

6. Given a point P on the side AB of the triangle ABC, find a point Q on AC such
that the length PQ shall be equal to the sum of the distances of the points P,
Q from BC.

7. On a given line to find a point such that the sum of the tangents from that point
to two given circles shall be equal to a given length.

SUPPLEMENTARY EXERCISES

1. If G is the centroid of a triangle ABC, show that the powers of the vertices A,
B, C for the circles GBC, GCA, GAB, respectively, are equal.

2. On the circumcircle of the triangle ABC to find a point M such that
MA' =

3. ABC is a triangle, A' the midpoint of BC, P the pole of BC for the circumcircle;
through the midpoint of AP a line is drawn parallel to BC meeting AB, AC,
produced, in Q, R, show that A, P, Q, R are cyclic.

4. Through two given points P, Q on the circumcircle (0) of a triangle ABC the
two circles are drawn touching the side BC, in A', A". Let B', B" and C', C"
be the analogous points on CA and AB. Assuming that A', B', C' are external,
and A", B", C" are internal to (0), show that (A', B', C'), (A', B", C"), (A",
B', C"), (A", B", C') are collinear triads of points, and (AA", BB", CC"),
(AA", BB', CC'), (AA', BB", CC'), (AA', BB', CC") are triads of concurrent
lines.

5. Show that the ratio of the distances of the centers of two circles from the radical
axis of these circles is equal to the ratio of the distances of this line from its poles
with respect to the circles considered.

6. Three circles, centers A, B, C, have a point D in common and intersect two-by-
two in the points A', B', C'. The common chord DC' of the first two circles
meets the third circle in C". Let A", B" be the analogous points on the other
two circles. Prove that the segments A'A", B'B", C'C" are twice as long as
the altitudes of the triangle ABC.
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7. Two circles (0, R), (0', R') are such that quadrilaterals may be constructed
that are inscribed in the first and circumscribed about the second. If 00' = c,
prove that (a) (R2 - c2)2 = 2 R'2(R2 + c2); (b) R2 cannot be smaller than 2 R'2;
(c) if R2 = 2 R'2, the circles are concentric and all the quadrilaterals are squares.

8. Two variable points are marked on a tangent to a given circle, at equal dis-
tances from a fixed point on that tangent. Show that the locus of the point of
intersection of the two tangents from the two points to the circle is a straight
line.

9. In what direction should a billiard ball placed on a circular billiard table be shot
so as to pass through the initial position after two successive reflexions?

10. Three circles are drawn each touching a different side of a triangle and all touch-
ing the circumcircle externally, in the same point. Prove that (a) the points of
contact with the sides of the triangle are collinear; (b) if the contacts with the
circumcircle are internal, the points of contact with the sides are the feet of
three concurrent cevians.

11. Construct a triangle given, in position, the incircle, the midpoint of a side, and
a point on the external bisector of the angle opposite that side.

12. Two given circles (0), (0') are touched by a common tangent in A, A'.
Through a fixed point of AA' a variable secant is drawn meeting (0) in B, C,
and (0') in B', C'. Show that the locus of the points of intersection of the lines
AB, AC with the lines A'B', A'C' is a circle coaxal with the given circles.

13. A variable circle (M) touches a given circle (0) in I and cuts a second given
circle (0') orthogonally in H, K. If the lines HK, 10' meet in P, and the line
70' meets (M) again in N, show that (a) the lines MN, MP meet the line 00' in
two fixed points; (b) the variable circle (M) is tangent to a second fixed circle.

14. Show that the three circles having for diameters three concurrent cevians are
met by the perpendiculars dropped from the orthocenter upon the respective
cevians in three pairs of points belonging to the same circle.

15. Given three concurrent cevians, show that the perpendiculars dropped upon
them from the orthocenter meet the circles having for diameters the correspond-
ing sides of the triangle in three pairs of points lying on a circle.

16. Show that the circles having for diameters three concurrent cevians meet the
circles having for diameters the corresponding sides of the triangle in three pairs
of points lying on a circle.

17. A straight line through the circumcenter of a triangle ABC meets BC, CA, AB
in P, Q, R; prove that the circles having for diameters AP, BQ, CR have two
points in common, one on the circumcircle, the other on the nine-point circle,
and that the common chord of the circles passes through the orthocenter. If
P', Q', R' are the symmetrics of P, Q, R with respect to the circumcenter 0,
prove that the lines AP', BQ', CR' meet in a point on the circumcircle.

18. Draw the three circles each passing through two vertices of a triangle and
orthogonal to its incircle. Show that (a) the triangle determined by the centers
of these three circles is homothetic to the triangle formed by the points of con-
tact of the incircle; (b) the circumcenters of these two triangles coincide, and
their circumradii differ by half the inradius of the given triangle. Consider the
excircles.
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19. Given two fixed points A, B and a variable line passing through a fixed point.
The two circles are constructed passing through A, B and tangent to the line
at M and N. Prove that the circle through M, N, and A (or B) passes through
a second fixed point.

20. If S is a center of similitude of two orthogonal circles intersecting in A and C,
prove that if B, D are the traces on the line of centers of the polars of S for these
circles, ABCD is a square.

21. Construct two circles given their two centers of similitude, the length of one
common tangent, and the direction of another.

22. Find the locus of a point P such that the tangents PA, PB, PC drawn from P to
three given coasal circles shall satisfy the relation PA PB: PC2 = k.

23. From two variable points C, D lying on a fixed line s and equidistant from the
center 0 of a given circle (0) the tangents CE, DF are drawn to (0) intersecting
in M. (a) Find the locus of M. (b) Find the locus of the incenter and of the
orthocenter of the triangle MEF. (c) Find the locus of the circumcenter of
the triangle PEF, where P is a given point.

24. If two circles intersect in A, B and touch a third circle in C, D, show that
AC:AD = BC:BD.

25. Show that the polar of a point common to two intersecting circles with respect
to a variable circle tangent to the given circles passes through a fixed point.
(It is assumed that the variable circle touches the given circles in a fixed way,
i.e., either both circles internally, or both circles externally, or one circle inter-
nally and the other externally.) If the given circles are tangent to each other,
show that the proposition is valid for their point of contact.

26. Show that the three chords of intersection of the circumcircle of a triangle with
the escribed circles meet the corresponding sides of the triangle in three collinear
points.

27. If the tangents p, q, v drawn to a circle (S) from the vertices of a triangle, sides
a, b, c, are such that one of the products ap, bq, cr is equal to the sum of the other
two, prove that (S) touches the circumcircle.

28. Four circles may be drawn tangent to the sides AB, AC of a triangle ABC and
to its circumcircle (0). Show that the four polars of A for these four circles
pass each through a tritangent center of ABC.



ix

INVERSION

518. Definitions. Given a point 0, the center, or the pole, of inversion,
and a constant k, the constant of inversion, to any point P of the plane
we make correspond a point P', on the line OF, such that OP -OP' = k.
The point P' is said to be the inverse of P. It is clear that P is the
inverse of P'.

If the constant k is positive, the two points P, P' are taken on the
same side of the center of inversion0; if k is negative, the points P, P'
lie on opposite sides of 0.

If the constant of inversion k is positive, the circle (0) having 0
for center and k for the square of its radius is called the circle of in-
version. Any point on the circumference of (0) coincides with its
inverse, and any two inverse points P, P' are also inverse with respect
to (0), in the sense in which inverse points with respect to a circle
were defined before (§ 358). The radius of (0) is called the radius of
inversion.

The line OP joining a point P to the center of inversion 0 is called
the radius vector of P.

The inversion having 0 for center and k for constant of inversion is
sometimes denoted by (0, k).

If the points P, P' correspond to each other in the inversion (0, k),
and the point P describes a given curve (C), the curve (C) described
by P' is said to be the inverse of the curve (C).
519. Theorem. Two points P, Q and their corresponding points P', Q'
are collinear, or concyclic.

In the latter case the lines PQ, P'Q' are antiparallel with respect to
the radii vectors OPP', OQQ'.

230
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520. Problem. Given the lengths of the radii vectors of two given points
and the length of the segment joining those points, to find the length of
the segment joining their inverse points.

0
FIG. 125

Let P', Q' be the points corresponding to the two given points P, Q
in the inversion (0, k) (Fig. 125). We have k, and from
the similar triangles OPQ, OP'Q' we have:

P'Q': PQ = OP':OQ = OQ =

hence:

(f) P'Q' = PQ(k:OP.OQ).

521. Theorem. If a point describes a straight line not passing through
the center of inversion, the inverse point describes a circle passing through
the center of inversion.

Let A be the foot of the perpendicular from the center of inversion
0 upon the given line x, P any point on x, and A', P' the inverses of
A, P (Fig. 126). The lines AP, A'P' are antiparallel with respect to
the lines OAA', OPP' (§ 519); hence angle A'P'P = PAO = 900,
and therefore the locus of P' is the circle (OA') having OA' for
diameter.

OTHERWISE. Let B be the symmetric of 0 with respect to x, and
B' the inverse of B (Fig. 126). The four points B, B', P, P' being
cyclic, the two triangles OBP, OB'P' are similar, and since OPB is
isosceles, we have B'P' = B'O. Thus the variable point P' is at a
fixed distance B'O from the fixed point B', which proves the proposi-
tion.
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522. Remark. (a) The proposition is often stated, more succinctly:
The inverse of a straight line is a circle through the center of inversion.

(b) The proofs suggest two methods for constructing the circle
into which a given line is inverted.

FIG. 126

(c) In the figure the pairs of inverse points lie on the same side of
the center of inversion 0, which shows that the constant of inversion
k is positive and the circle of inversion (0) is real. However, the proofs
given are valid whether k is positive, or negative. The reader may
draw the figure for the latter case.

(d) If the circle of inversion is real, the given line is the radical
axis of this circle and the circle inverse to the line.

Indeed, we have (Fig. 126) :

AO AA' = AO(AO + OA') = A02 + AO -OA' = A02 - OA OA'.

Now AO- A A' is the power of A for the circle (OA'), and A02 -
OA OA' is the power of A with respect to the circle of inversion (0),
for OA -OA' is the square of the radius of (0); hence the proposition.

(e) We have:
k = OB OB' = 2 0A OB';

hence the radius OB' of the inverse circle (OA') is equal to (k:2OA).
523. Converse Theorem. If a point describes a circle passing through
the center of inversion, the inverse point describes a straight line perpen-
dicular to the line joining the center of the given circle to the center of in-
version.

The proof is readily obtained by reversing the steps in either of the
proofs of the direct proposition.
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The proposition is often stated more briefly: The inverse of a circle
passing through the center of inversion is a straight line.
524. Theorem. A straight line and a circle may be considered inverse
figures in two different ways.

From the preceding two propositions (§§ 521, 523) it follows that if
a circle and a line are two inverse figures, the center of inversion must
be an end of the diameter d of the given circle perpendicular to the
given line x. On the other hand, if we take an end 0 of d as center of
inversion and for constant of inversion k the product of the distances
of 0 from x and from the diametric opposite of 0 on the given circle,
the line x will invert into the given circle (§ 521); hence the proposi-
tion.

If x is tangent to the circle, the diametric opposite of the point of
contact is the only center of inversion available.
525. Theorem. If a point describes a circle not passing through the
center of inversion, the inverse point describes a circle not passing through
the center of inversion.

Let the line OP joining the center of inversion 0 to any point P of
the given circle (C) meet (C) again in Q (Fig. 127), and let P' be the

FIG. 127

inverse of P in the inversion (0, k). We have, denoting by p the
power of 0 for (C) :

OP-OP'= k, p; hence OP':OQ = k: p.

Thus as Q varies on (C) with the point P, the point P describes
a circle (D) homothetic to (C), the point 0 and the constant k: p being
the center and the ratio of homothecy.
526. Remark. (a) The proposition is sometimes stated more suc-
cinctly: The inverse of a circle is a circle.
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(b) The center of inversion is a center of similitude of the given
circle and its inverse.

(c) The two inverse points P, P' are two antihomologous points on
the two inverse circles. The point P' describes the circle (D) in the
sense opposite to the sense in which the point P describes the given
circle (C).

(d) If R, R' are the radii of the circles (C), (D), we have (Fig. 127):

R':R = OP':OQ = k: p;
hence:

R' = R(k: p).

(e) If the constant of inversion is equal to the power of the center
of inversion with respect to the given circle, the circle inverts into it-
self, for in that case the point P' coincides with the point Q.

When the constant of inversion is positive, and therefore the circle
of inversion real, the result thus obtained may be stated: A circle
orthogonal to the circle of inversion inverts into itself.
527. Observation. It is essential to observe that the center D of the
circle (D) (§ 526) is not the inverse of the center C of the given circle
(C). The inverse I of C may be found in the following manner.

Let A, B be the diametrically opposite points of (C) lying on the
line OCD, and A', B' their inverses (Fig. 127). We have, in magni-
tude and in sign:

OA+OB= 20C,

hence, dividing the terms of the first equality by these equal products:

OA' + 57B7 = UT

i.e., the point I is the harmonic conjugate of 0 with respect to A', B'
(§ 348), or, in other words, the center of a circle inverts into the inverse,
with respect to the inverse circle, of the center of inversion.
528. Theorem. Any two circles may be considered as the inverse to one
another, in two different ways.

If two circles are the inverse to one another, the center of inversion
is a center of similitude of the two circles (§ 526 b), and the constant
of inversion is the product of the distances of this center of similitude
from two points on the two circles antihomologous with respect to the
center of similitude considered (§ 526).



Ch. IX, § 528, 529, 5301 INVERSION 235

On the other hand, given the two circles, if the center and constant
of inversion be chosen in the manner just indicated, one circle will
invert into the other (§ 525). Hence the proposition.
529. Definitions. If two curves have a point P in common, the
angle formed by the tangents at P to the curves is said to be the angle
of intersection of the curves.

The angle of intersection of a curve and a straight line is the angle
formed by the straight line and the tangent to the curve at a point
common to the curve and the given line.

In particular, the angle of intersection of a line and a circle is a right
angle if, and only if, the line passes through the center of the circle.
530. Theorem. The tangents to two inverse curves at two corresponding
points are symmetrical with respect to the mediator of the segment de-
termined by the points of contact.

Let A, A' and B, B' be two pairs of corresponding points on two
inverse curves (C), (C) (Fig. 128). In the cyclic quadrilateral
ABB'A' (§ 519) angle A'AB = A'B'D.

T
FIG. 128

Now if B approaches A, the limiting positions of the chords AB,
A'B' are the tangents AT, A'T to (C), (C') at A, A', and the limiting
position of the line OBB' is the line OA A'. Thus the limiting values
of the angles A'AB, A'B'D are the angles AA T, EA'U = AA'T;
hence the proposition.

Observe that while the angles TA A', TA'A are equal in magnitude,
they are opposite in sign, if the radius vector OA A' is taken for the
initial line.
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531. Theorem. If two curves intersect, their angle of intersection is equal
to the angle of intersection of the inverse curves at the corresponding point.

Indeed, if AT, AR are the tangents to the two given curves inter-
secting at A, and A'T, A'R are the tangents to the respective inverse
curves at the corresponding point A', the points T, R lie on the medi-
ator of the segment A A', and the angles TAR, TA'R of the two con-
gruent triangles TAR, TA'R are equal.

This important proposition is often stated thus: Inversion preserves
angles.
532. COROLLARY. (a) Inversion preserves orthogonality. (b) Inver-
sion preserves contact.
533. Peaucellier's Cell. Let A BCD (Fig. 129) be a rhombus formed
by four rigid bars of equal length hinged together, and let the joints

FIG. 129

B, D be connected with a fixed point 0 by means of two equal rigid
bars hinged at 0, and at B, D.

The points 0, A, C and the midpoint E of BD lie on the mediator
of BD, and we have:

OA OC = (OE - AE) (OE -}- AE) = OE2 - AE2
= (OD2 - DE2) - (AD2 - DE2) = OD2 - AD2;

hence A, C are inverse points in the inversion whose circle of inversion
has for center the point 0 and for radius the leg of a right triangle,
the hypotenuse and the other leg of which are the fixed lengths OD
and AD. Thus if the point A is made to describe any curve, the
point C will describe the inverse curve.

In particular, if A is connected by a rigid rod to a fixed point M,
and MA = MO, the point A will describe a circle passing through 0;
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hence the point C will describe a straight line perpendicular to MO
(§ 523).

This linkage, known as Peaucellier's Cell, transforms circular motion
into rectilinear motion.
534. Observation. When a figure (F) is transformed by an inversion,
the relations existing within the figure (F) appear in the inverse figure
(F') in a more or less changed form. The preceding basic properties
of inversion enable us to infer what property (P') the figure (F') will
have, if the figure (F) has the property (P), and vice versa.

This relation between the properties of the two figures (F), (F') is
often made use of, in the following manner. In order to prove that
the figure (F) has a certain property, we transform (F) by a suitable
inversion into a figure (F'). It often happens that in the new figure
we readily notice a property the corresponding property of which in
(F) is precisely the property of (F) to be proved. This correspondence
between the two properties is the required proof.

Similar considerations apply to construction problems.
The following propositions illustrate the method.

535. Theorem. If two of the four circles determined by four points
taken three at a time are orthogonal, the remaining two circles are also
orthogonal.

Fir.. 130

Let A, B, C, D (Fig. 130) be the four given points, and suppose that
the two circles ABC, ABD are orthogonal. The inversion having
(A, AB) for circle of inversion transforms the point B into itself, and
the two circles ABC, ABD into two straight lines (§ 523) forming a
right angle (§ 532 a) at B and passing, respectively, through the in-
verses C', D' of C, D.
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The circle CDA transforms into the line C'D' (§ 523) and the circle
CDB into the circle C'D'B (§ 525). Now since C'BD' is a right angle,
the line C'D' is a diameter of the circle C'D'B and is therefore orthog-
onal to that circle. From this we infer that the circles (CDA), (CDB)
are orthogonal (§ 532 a), which proves the proposition.

OTHERWISE. The inversion (C, p), where p is the power of C for
the circle ABD, transforms this circle into itself (§ 526 e), and the
lines CA, CB, CD meet this circle again in the inverses A', B', D' of
the points A, B, D. The circle CAB inverts into the straight line
A'B', and this line is a diameter of the circle ABD, for the circles ABC,
ABD are orthogonal, by assumption.

The circles CDA, CDB invert into the lines D'A', D'B'. Now these
two lines are perpendicular; hence the circles CDA, CDB are orthogonal.
536. Ptolemy's Theorem and Its Extension. In a quadrilateral the
sum of the products of the two pairs of opposite sides is equal to or greater
than the product of the diagonals depending on whether the quadrilateral
is cyclic or not cyclic.

FIG. 131

Let OABC be the given quadrilateral (Fig. 131) and A', B', C' the
inverse points of A, B, C in the inversion (0, k). We have (§ 520):

AB __ A'B' BC _ B'C' AC _ A'C'
OA OB k ' OB OC k ' OA OC k

Now if OABC is not cyclic, the points A', B', C are not collinear
(§ 525), so that:

(1) A'B' + B'C' > A'C';
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hence:

(2)

or:

(3)

AB BC AC
OA 0B + 0B 0C > OA OC'

BC-OA > AC-OB.

But if OABC is cyclic, the points A', B', C' are collinear (§ 523);
hence in (1), and therefore also in (2) and (3), the sign of inequality is
to be replaced by the sign of equality.
537. Theorem. If a circle is tangent internally (or externally) to the
circumwircle of a triangle and to two sides of the triangle, the line joining
its points of contact with the sides passes through the incenter (or corre-
sponding excenter) of the triangle.

Let the circle PQT touch the circumcircle (0) of the triangle ABC
internally in T (Fig. 132) and the sides AB, AC in P, Q. Let I be

A

the midpoint of PQ. If B', C' are the inverses of the points B, C in
the inversion (A, All), the line B'C' is the inverse of (0), and the
line AT meets B'C' in the inverse T' of T.

Let P', Q' be the inverses of P, Q. We have A P A P' = AI2, and
since the triangle AIP is right-angled at I, the point P' coincides with
the foot of the perpendicular from I upon the hypotenuse AP. Simi-
larly for the point Q. Now the circle P'Q'T' is the inverse of PQT and
is therefore tangent to B'C' at T' (§ 532 b); hence the point I is the
excenter of the triangle AB'C' relative to A.
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The circle IB'C' meets AI in the incenter M of the triangle AB'C'
(§ 122 a), and in the cyclic quadrilateral IB'MC' we have:

L B'IM = B'C'M = a B'C'A = 1 ABC,
for the lines BC, B'C' are antiparallel with respect to AB, AC. Now
the lines BI and B'I are also antiparallel with respect to AB, AI, for
the points B', I are the inverses of B, I; hence:

L ABI = B'IA = B'IM = z ABC,
and I is the incenter of ABC.

The proof in case of external contact is analogous.
538. Problem. Find an inversion which transforms three given circles
into themselves.

The power p of the required center of inversion S with respect to
each of the given circles must be equal to the constant of inversion k
(§ 526 e); hence the three powers must be equal, i.e., S must coincide
with the radical center of the three given circles. Furthermore, the
constant of inversion must be equal to the power of S with respect to
the given circles. The problem has one and only one solution (§ 493).

If the centers of three given circles are collinear, the problem has
either an infinite number of solutions, or no solution, depending on
whether the circles are or are not coaxal.
539. Problem. Find the inversion which transforms three given circles
with noncollinear centers into three circles having their centers on a given
straight line.

The three inverse circles are orthogonal to the given line s; hence s
is the inverse of a circle passing through the required center of inver-
sion and orthogonal to the three given circles, i.e., 0 is a point of the
orthogonal circle (R) of the three given circles. Thus if (R) is real, 0
is either end of the diameter of (R) perpendicular to s.
540. Theorem. A coaxal pencil of circles inverts into a coaxal pencil of
circles.

Let (P), (Q) be any two circles of the coaxal pencil (E) conjugate
to the given coaxal pencil of circles (F). Any circle (C) of (F) inverts
into a circle (C') orthogonal to the inverses (P'), (Q') of (P), (Q)
(§ 532 a); hence (C') describes a coaxal pencil (F') (§ 455).
541. Discussion. One of the two given conjugate coaxal pencils
(E), (F), say (F), has two basic points A, B, which points are the limit-
ing points of (E). The inverse circles (F) of (F) pass through the
inverses A', B' of A, B.



Ch. IX, § 541-5451 INVERSION 241

The circles of (E) invert into a coaxal pencil (E') conjugate to (F');
hence the points A', B' are the limiting points of (E').

If one of the points A, B, say A, is taken for center of inversion, the
circles of (F) will invert into straight lines passing through the inverse
B' of B; every circle of (E) will be orthogonal to the lines passing
through B', i.e., B' will be the common center of all the circles of (E').
542. COROLLARY. In an inversion two points inverse with respect to a
circle invert into two points inverse with respect to the inverse circle of the
given circle.

Indeed, the limiting points A, B (§ 541) are inverse with respect
to any given circle, say (M), of (E), and the points A', B' are inverse
with respect to the inverse (Al") of (M).
543. Theorem. Two inverse circles and the circle of inversion are
coaxal.

Let (C) and (C') be two inverse circles and (S) the circle of inversion.
If (S) and (C) have two points in common, the circle (C') passes

through these points, since the points of (S) invert into themselves.
If (S) and (C) have no common points, they determine a noninter-

secting coaxal pencil of circles having two limiting points L, L. These
points being inverse with respect to (S) invert into each other, and since
they are inverse with respect to (C), they are also inverse with respect
to (C') (§ 542); hence (S), (C), (C') belong to the same coaxal pencil
(§448b).
544. COROLLARY. If two circles are inverse with respect to a third circle
as circle of inversion, this circle is a circle of antisimilitude of the first
two circles.

Indeed, the center S of the third circle (S) is a center of similitude
of the first two circles (C), (C') (§ 526 b), and (S) is coaxal with (C), (C') ;
hence the proposition.
545. Theorem. In a triangle the circumcircle, the nine-point circle, the
polar circle, and the circumcircle of the tangential triangle are coaxal.

The vertex A and the foot D of the altitude AD of the triangle ABC
are inverse points with respect to the polar circle (II) of ABC; simi-
larly for the analogous pairs of points B, E and C, F. Thus the cir-
cumcircle (0) = ABC and the nine-point circle (N) = DEF of ABC
are inverse with respect to (H); hence (0), (N), (H) are coaxal (§ 543).

The point of intersection L of the tangents to (0) at B, C is the pole
of BC for (0); hence L and the midpoint A' of BC are inverse with
respect to (0). Similarly for the analogous pairs of points M, B' and
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N, C'. Thus the circumcircle (T) = LMN of the tangential triangle
of ABC and (N) = A'B'C' are inverse with respect to (0), and there-
fore (0), (T), (N) are coaxal.

Consequently the four circles (0), (N), (H), (T) are coaxal (§ 441).
546. COROLLARY. The circumcenter of the tangential triangle lies on
the Euler line of the given triangle (§ 443).

EXERCISES

1. Show that the tangents to a curve from the center of inversion are also tangent
to the inverse curve.

2. If two circles are inverted with respect to any center, into what does their line
of centers invert?

3. Prove that the formula (f) (§ 520) remains valid, if the points P, Q are collinear
with the center of inversion.

4. Show that the inverse of a harmonic range, with respect to a point on the line
of the range, is a harmonic range.

5. Given three noncollinear points P, A, B, and a variable point M collinear with
A, B, prove that the angle of intersection of the two circles PAM, PBM is con-
stant.

6. The tangent LM to a given circle (0) at a variable point M meets a given line
s in L. Show that the locus of the projection P of M upon OL is a circle.

7. Given a circle (0) and the two fixed points A, B, a variable line through B meets
(0) in C, D, and the lines AC, AD meet (0) again in E, F. Show that the center
of the circle AEF describes a straight line.

& If the line joining the ends A, B of a diameter AB of a given circle (0) to a given
point P meets (0) again in A', B', show that the circle PA'B' is orthogonal
to (0).

9. Given two circles (A), (B) intersecting in E, F, show that the chord E'F' deter-
mined in (A) by the lines MEE', MFF joining E, F to any point M of (B) is
perpendicular to MB.

10. Two rectangular chords BC, DE of a given circle intersect within the circle, in
the point A. Show that the altitude of the triangle ABD issued from A is a
median of the triangle ACE.

11. The points A', B', C' are marked on the altitudes AH, BH, CH of the triangle
ABC so that we have, both in magnitude and in sign:

HA-HA'= HB HB' = HC-HC'.

Show that H is a tritangent center of the triangle A'B'C'.
12. A variable tangent to a given circle, center A, cuts a second given circle, center

B, in the points C, D. Prove that the circle BCD is tangent to a fixed circle.
Hint. Consider the inversion (B, BC').

13. An angle BAC of fixed magnitude revolves about its fixed vertex A and meets a
fixed line s in B, C. Show that the circle ABC is tangent to a fixed circle.
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14. Show that the product of the powers of a center of similitude of two circles with
respect to these circles is equal to the fourth power of the radius of the corre-
sponding circle of antisimilitude.

IS. If the circle (B) passes through the center A of the circle (A), show that the
radical axis of (A), (B) is the inverse of (B) with respect to (A) taken as circle
of inversion.

16. Show that the circle of similitude and the radical axis of two circles are inverse
with respect to a circle of antisimilitude of the two given circles.

17. Of the four lines joining the ends of two rectangular diameters of two orthogonal
circles, two lines pass through one point of intersection of the two circles, and
the remaining two lines pass through the other point of intersection of the two
circles

18. (a) Prove that the inverse of the circumcircle (0) of a triangle ABC with respect
to the incircle (I), as circle of inversion, is the nine-point circle of the triangle
XYZ determined by the points of contact of (1) with the sides of ABC;
(b) prove, by inversion, Euler's formula d2 = R2 - 2 Rr; (c) state and prove
by inversion the analogous propositions regarding the excircles.

19. Given four points in a plane, each set of three is inverted with respect to the
fourth; show that the four inverse triangles are similar.

20. Through two given points to draw a circle intersecting a given circle at a given
angle.

21. Invert the theorem: The altitudes of a triangle meet in a point. Hint. Use
the orthocenter as center of inversion.
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RECENT GEOMETRY OF THE TRIANGLE

A. POLES AND POLARS WITH RESPECT TO A TRIANGLE

547. Harmonic Relations. (a) Let P be a point in the plane of the
triangle ABC (Fig. 133), L, M, N the traces of the lines AP, BP, CP
on the sides BC, CA, AB, and L', M', N' the harmonic conjugates of
L, M, N, for the respective pairs of vertices of ABC.

FIG. 133

Theorem. The points L', M', N' are collinear.
(b) Let p be a line in the plane of the triangle ABC meeting the

sides BC, CA, AB in the points L', M', N', and let L, M, N be the
harmonic conjugates of L', M', N' for the respective pairs of vertices
of ABC.

Theorem. The lines AL, BM, CN are concurrent.
244
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In both cases (a) and (b) we have, by construction, both in magni-
tude and in sign:

BL' BL CM' CM AN'AN
L'C LC' M'A MA' N'B NB'

hence, multiplying :

(F)
BL'-CM'-AN' _ BL-CH-AN

In case (a) the right-hand side of the formula (F) is equal to unity,
by Ceva's theorem, and it follows from the resulting equality that the
points L', M', N' are collinear, by Menelaus' theorem.

In case (b) the left-hand side of (F) is equal to unity, by Menelaus'
theorem, and it follows from the resulting equality that the lines AL,
BM, CN are concurrent, by Ceva's theorem.
548. Definitions. The line p = L'M'N' (§ 547) is said to be the
trilinear polar, or the harmonic line of the point P for the triangle ABC,
and P is the trilinear pole, or the harmonic pole of the line p for ABC.
549. Theorem. The trilinear polar of a point for a triangle is the axis
of perspeclivity of this triangle and the cevian triangle of the point for the
given triangle.

We have (Fig. 133) :

(ABNN') = -1, (ACMM') _ -1,

and the two harmonic ranges have the point A in common; hence
(§ 357) the lines BC, MN, M'N' are concurrent, i.e., the point L' is
collinear with M, N. Similarly M' is collinear with L, N, and N'
with L, M. Hence the proposition.
550. Remark. Given the triangle ABC and the point P, the above
proposition (§ 549) gives a simple method for the construction of the
trilinear polar p of P for ABC, with ruler alone.
551. Theorem. The trilinear polar of a point for a triangle is also its
trilinear polar for the cevian triangle of this point urith respect to the
given triangle.

We have A (BCLL') _ -1 (Fig. 133) ; hence the point L' is the
harmonic conjugate, with respect to M, N, of the trace D of the line
APL on the line L'MN (§ 353). Thus L' is a point on the trilinear
polar of P for the triangle LMN. Similarly for M' and N'. Hence
the proposition.
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552. Definition. The vertices L" = (BM', CN'), M" = (CN', AL'),
N" = (AL', BM') of the triangle formed by the lines AL', BM', CN'
(§ 547) are said to be the harmonic associates of P for the triangle ABC.
553. Theorem. The harmonic associates of the point P (§ 552) lie on
the lines AP, BP, CP and are separated harmonically from P by the
pairs of points A and L, B and M, C and N, respectively.

From the two harmonic pencils (Fig. 133) :

B(ACMM') = -1, C(ABNN') = -1
cut by the line APL, it follows that both BM' and CN' pass through
the harmonic conjugate of P for A and L; hence that harmonic con-
jugate is the point L" common to the lines BM', CN'. Similarly for
M" and N".
554. COROLLARY. The harmonic associates of a point P with respect to
a triangle ABC form a triangle perspective to ABC, the point P being the
center of perspectivity, and the axis of perspectivity being the trilinear
polar of P for ABC.
555. Remark. Given the triangle ABC and the line p = L'M'N',
the lines AL', BM', CN' determine the points L", M", N" and the
lines AL", BM", CN" meet in the harmonic pole P of the line p for
the triangle ABC.
556. Theorem. The point P and its three harmonic associates with re-
spect to a triangle ABC form a group of four points, any three of which de-
termine a triangle circumscribed about and perspective to ABC, the center
of perspectivity being the fourth point of the group.

The axes of perspectivity are the lines L'MN, LM'N, LMN'.
The proof is readily obtained from the figure (Fig. 133).

557. Remark. The figure 133 was constructed given the triangle
ABC and the point P. The same figure, however, would be obtained,
if instead of P one of its harmonic associates, say L", with respect to
ABC were given. For, given L", its harmonic conjugate with respect
to A, L is the point P, and the rest of the figure follows.

EXERCISES

1. Show that the orthic axis of a triangle is the trilinear polar of the orthocenter
with respect to the given triangle and 'with respect to the orthic triangle; the
vertices of the given triangle are the harmonic associates of the orthocenter with
respect to the orthic triangle.

2. Show that the trilinear polar of the incenter of a triangle passes through the feet
of the external bisectors, and this line is perpendicular to the line joining the
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incenter to the circumcenter; the excenters of the triangle are the harmonic
associates of the incenter.

3. Construct the harmonic associates of the centroid. Does the centroid have a

tridnear polar?
4. If L, M, N are the traces of the lines AP, BP, CP on the sides BC, CA, AB of the

triangle ABC, and L', M', N' the traces, on the same sides, of the trilinear polar
of P for ABC, show that the midpoints of the segments LL', MM', NN' are
collinear.

5. If A' is the point of intersection of the side BC of the triangle ABC with the
trilinear polar p of a point P on the circumcircle of ABC, show that the circle
APA' passes through the midpoint of BC.

6. With the vertices of a given triangle as centers, it is possible to describe three
circles so that the feet of three given concurrent cevians shall be centers of
similitude for the respective pairs of circles.

7. Let L, M, N, be the feet of the cevians AP, BP, CP of the triangle ABC, and let
P' be a point on the trilinear polar of P for ABC. If the lines AP', BP', CP'
meet MN, NL, LM in X, Y, Z, show that the triangle XYZ is circumscribed
about the triangle ABC.

B. LEMOINE GEOMETRY

a. SYMMEDIANS

558. Definition. The symmetric of a median of a triangle with
respect to the internal bisector issued from the same vertex is a sym-
median of the triangle.

A triangle has three symmedians.
Observe that a median and the corresponding symmedian of a tri-

angle are also symmetric with respect to the external bisector issued
from the same vertex.
559. Theorem. The traces, on the circumcircle of a triangle, of a median
and the corresponding symmedian de- A

termine a line parallel to the side of the
triangle opposite the vertex considered.

Indeed, the arc PQ (Fig. 134)
intercepted on the circumcircle of B
the triangle ABC by the median
A P and the symmedian AQ has the
same midpoint M as the arc sub-
tended by the side BC.

This proposition affords a simple
construction of the symmedians of
a triangle.

M
FIG. 134
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560. Theorem. The symmedian issued from a vertex of a triangle
passes through the point of intersection of the tangents to the circumcircle
at the other two vertices of the triangle.

The point of intersection D of the tangents DB, DC to the circum-
circle (0) of the triangle ABC at B, C is the pole of BC for (0); hence
the diameter II' of (0) (Fig. 135) passing through D is the mediator
of BC. Thus (DA'II') = -1, and therefore A (DA'II') = -1.

Now IAI' is a right angle; hence AI, Al' are the bisectors of the
angle DAA' (§ 355). But Al is the internal bisector of the angle A,
and A A' is the median of ABC; hence AD is the symmedian of ABC
issued from A, by definition.
561. Theorem. The segments into which a side of a triangle is divided
by the corresponding symmedian are proportional to the squares of the
adjacent sides of the triangle.

The polar BC of the point D (Fig. 135) meets the tangent ATa to
the circumcircle (0) at A in the pole Ta of the symmedian AD; hence

r

D
FIG. 136

the trace S of BC on AD is separated harmonically from Ta by the
points B, C of (0). Now Ta divides the segment BC externally in
the ratio AB2: AC2 (§ 319) ; hence the proposition.
562. Remark. We have proved also that a symmedian of a triangle
is the harmonic conjugate of the tangent to the circumcircle at the vertex
considered with respect to the two sides passing through that vertex.
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563. Definition. The tangents to the circumcircle of a triangle at
the vertices are sometimes referred to as the external symmedians of
the triangle.
564. Theorem. (a) A symmedian of a triangle bisects any antiparallel
to the side of the triangle relatibe to the symmedian considered.

Indeed, any antiparallel to BC with respect to AB, AC (Fig. 135) is
parallel to the tangent ATa (§§ 185, 191); hence the proposition
(§ 351).

(b) Conversely. If a segment limited by two sides of a triangle is
bisected by the corresponding symmedian, it is antiparallel, with respect
to those two sides, to the third side of the triangle.

Indeed, the problem of § 41 has only one solution.
565. Theorem. The distances from a point on a symmedian of a tri-
angle to the two including sides are proportional to these sides.

A

Fir.. 136

Let x, y be the distances from the foot S of the symmedian AS
(Fig. 136) to the sides AC, AB of ABC. Since the triangles ASC,
ASB have a common altitude issued from A, we have:

bx:cy = area ASC: area ASB = SC:SB = b2:c2 (§ 561);

hence:

x:y = b:c.

Now the distances from any point of AS to AC, AB are proportional
to x, y; hence the proposition.
566. Remark. The preceding proposition (§ 565) is valid for the
points of the external symmedian of the triangle. The proof is anal-
ogous.
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567. Theorem. If the distances from a point to two sides of a triangle
are proportional to these sides, the point lies on the symmedian relative
to the third side.

It is assumed that the point lies within the angle of the two sides
considered.

If M is a point whose distances from b, c are proportional to b, c, and
S is the trace of AM on BC (Fig. 136), then the distances from S to
b, c are also proportional to b, c. Hence S divides BC into two seg-
ments whose ratio is equal to b2: c2, as is seen by the proof of the pre-
ceding theorem (§ 565). Now there is only one point which divides
BC internally in this ratio; hence the proposition.
568. Theorem. If from a point on the symmedian (median) perpendicu-
lars are drawn to the including sides of the triangle, the line joining the
feet of these perpendiculars is perpendicular to the corresponding median
(symmedian) of the triangle.

FIG. 137

In the triangle ABC let A A' and AS be the median and the sym-
median issued from A (Fig. 137). If MD, ME are the perpendiculars
to AB, AC from a point M of AS, the quadrilateral ADME is cyclic;
hence:

ZDEM = DAM = EAA'.

Now ME is perpendicular to AE; hence ED is perpendicular to AA'.
In a similar way it may be shown that GH is perpendicular to AS.

569. Theorem. If two antiparallels to two sides of a triangle are of
equal length, they intersect on the symmedian relative to the third side of
the triangle.
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Let DE, FH (Fig. 138) be antiparallel to the sides AC, AB, re-
spectively, of the triangle ABC, and let M be their point of intersec-
tion. We have:

L HFC = DEB = A;

hence the triangle FME is isosceles. Thus:

FM = EM, ED = FH; hence DM = HM.
A

Fta. 138

Let S be the trace of AM on BC, and SQ, SP the parallels through S
to DE, FH. From similar triangles we have:

SQ: MD = AS: AM = SP: ME,

and since MD = MB, we have SQ = SP.

Now the triangles BSQ, CSP are both similar to the triangle ABC;
hence:

BS:SQ = c: h, SP: SC = c:b;

hence, multiplying:
BS : SC = c2 : b2,

since SQ = SP. Thus S is the foot of the symmedian (§ 561).
570. Converse Theorem. The two antiparallels to two sides of a tri-
angle drawn through a point on the symmedian relative to the third side
are of equal length.

The proposition is proved by taking the steps of the direct proof in
reverse order.
571. COROLLARY. The symmedian relative to a given side of a triangle
is the locus of the points through which anti parallels of equal length may
be drawn to the other two sides of the triangle.
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EXERCISES

1. On the side AB of the triangle ABC lay off AB' = AC, and on AC lay off
AC' = AB. Show that the midpoint of B'C' lies on the symmedian of ABC
issued from A.

2. On the sides AB, AC of the triangle ABC squares are constructed external to
ABC. Show that the sides of these squares opposite the sides AB, AC inter-
sect on the symmedian of ABC issued from A.

3. Construct a triangle given the altitude, the median, and the symmedian issued
from the same vertex.

4. Show that the line joining the feet of the perpendiculars dropped upon two sides
of a triangle from the midpoint of the third side is perpendicular to the sym-
median relative to this side.

5. Show that a side of a triangle and the corresponding symmedian are conjugate
with respect to the circumcircle of the triangle.

6. On the side BC of the triangle ABC to find a point D such that if the parallels
through D to AB, AC meet AC, AB in E, F, the line EF shall be antiparallel to
BC.

7. If the symmedian issued from the vertex A of the triangle ABC meets the cir-
cumcircle in D, and P, Q, R are the projections of D upon BC, CA, AB, show
that PQ = PR,

8. Show that the parallel to the side BC through the vertex A of ABC, the per-
pendicular from the circumcenter 0 upon the symmedian issued from A, and the
perpendicular upon AO from the point of intersection T of the tangents to the
circumcircle at B and C are three concurrent lines.

9. If A', B' are the inverse points of A, B in an inversion of center 0, show that the
median and the symmedian of the triangle AOB issued from 0 are respectively
the symmedian and the median of the triangle A'OB'.

10. Show that the three points of intersection of the symmedians of a triangle with
the circumcircle determine a triangle having the same symmedians as the given
triangle.

11. The median and the symmedian of a triangle ABC issued from A meet the cir-
cumcircle in M', N'. Show that the Simson lines of M', N' are respectively
perpendicular to AN', AM'.

b. THE LEMOINE POINT

572. Theorem. The three symmedians of a triangle are concurrent.
Let K be the point common to the two symmedians BK, AK

(Fig. 139) of the triangle ABC, and p, q, r the distances of K from the
sides a, b, c of ABC. We have (§ 565):

p:r = a:c, q:r = b:c; hence p:q = a:b,

and therefore CK is the third symmedian of the triangle ABC (§ 567).
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573. Definition. The point common to the three symmedians of a
triangle is called the symmedian point, or the Lemoine point, of the tri-
angle. The point is usually denoted by K.
574. COROLLARY. The distances of the Lemoine point K from the sides
of the triangle are proportional to the respective sides, and K is the only
point, within the triangle, having this property. However, the vertices of
the tangential triangle of the given triangle also possess this property
(§§ 565, 560).
575. Remark. The proposition (§ 572) may be proved by making
use of other properties of the symmedians. The reader may do so
by utilizing § S61 and Ceva's theorem. Other ways will be pointed
out in what follows,
576. Definition. The line containing the traces, on the sides of a
given triangle, of the tangents to the circumcircle at the respectively
opposite vertices (§ 319) is called the Lemoine axis of the given tri-
angle.
577. Theorem. The Lemoine point of a triangle is the pole of the
Lemoine axis with respect to the circumcircle of the triangle.

If the tangent AL to the circumcircle (0) of the triangle ABC at
the vertex A meets BC in L (Fig. 139), the polar of L for (0) passes
through A and through the pole D of BC (§ 379); hence this polar
coincides with the symmedian AD (§ 560). Similarly for the analo-
gous points M, N. Now the points L, M, N being collinear, it follows
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both that the three symmedians AD, BE, CF are concurrent, and
that their common point K is the pole of LMN.

Observe that since the Lemoine point lies inside the triangle and
therefore inside the circumcircle, the Lemoine axis does not cut the
circumcircle.
578. Definition. The diameter of the circumcircle of a triangle pass-
ing through the Lemoine point of the triangle is called the Brocard
diameter of the triangle.
579. COROLLARY. The Brocard diameter of a triangle is perpendicular
to the Lemoine axis (§ 375 a).
580. Remark. The circumcircle (0) of ABC is the incircle of the
tangential triangle DEF of ABC, from which it follows both that the
symmedians DA, EB, FC are concurrent (§ 330) and that the Lemoine
point of a triangle ABC is the Gergonne point of its tangential tri-
angle DEF.
581. Theorem. The Lemoine point of a triangle is' the trilinear pole,
for the triangle, of the Lemoine axis of the triangle.

The trace L (Fig. 139) of the Lemoine axis LMN on the side BC
has for harmonic conjugate, with respect to B and C, the foot P of
the symmedian AP of ABC. Similarly for the analogous pairs of
points M and Q, N and R. It follows therefore both that the sym-
medians AP, BQ, CR are concurrent, and that their common point K
is the trilinear pole of LMN for ABC.
582. COROLLARY. The vertices of the tangential triangle of a given tri-
angle are the harmonic associates of the Lemoine point of the given triangle.
583. Theorem. The pedal triangle of the Lemoine point has this point
for its centroid.

Let X, Y, Z (Fig. 140) be the projections of the symmedian point K
of the triangle ABC upon the sides BC, CA, AB, and let the parallel
to KZ through Y meet KX, extended, in X'.

The triangles KYX', ABC are similar, for their sides are respectively
perpendicular; hence:

But (§ 565):
KY: AC = YX':AB.

KY: AC = KZ: AB;

hence X'YKZ is a parallelogram, and the line KX' bisects YZ, i.e.,
XK is a median of the triangle X YZ. Similarly for YK and ZK.
Hence the proposition.
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584. COROLLARY. The lines YX', ZX' are parallel to KZ, KY and
therefore perpendicular to AB, AC; hence X' is the orthocenter of
the triangle A YZ, and therefore the line AX' is perpendicular to
YZ, i.e., AX' is the median of ABC issued from A (§ 568).

On the other hand, if I is the midpoint of YZ, we have:

KX'=2KI=KX;
hence: The symmetric, with respect to the Lemoine point, of the projection
of this point upon a side of the triangle lies on the median of the triangle
relative to the side considered.
585. Problem. Construct a triangle, given, in position, two vertices and
the Lemoine point.

FIRST SOLUTION. Let X be the projection of the given symmedian
point K (Fig. 140) upon the side joining the two given vertices B, C.
The midpoint A' of BC and the symmetric X' of X with respect to K
lie on the median of the required triangle ABC passing through A
(§ 584).

The line joining the projections Y, Z of K upon AC, AB is perpen-
dicular to AX'A' (§ 565) and passes through the midpoint I of KX'
(§ 584). Thus the point Z may be determined as the intersection of
the perpendicular from the point I to the line A'X' with the circle
having KB for diameter. The lines A'X' and BZ determine the third
required vertex A. The problem may have two, one, or no solutions.

SECOND SOLUTION. Let B, C be the given vertices and K the given
symmedian point of the required triangle ABC, and G its centroid.
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If the parallels through A to BG, CG meet BC in D, E, and A' is the
midpoint of BC, we have:

A'B:BD = A'G:GA = A'C:CE = 1:2;
hence:

BD = CE = BC = a,

and the points D, E may be constructed.
On the other hand we have (§ 558):

L DAB = GBA = KBA', L CAE = GCA = KCA'.

Thus the known segments BD, CE subtend at A two known angles;
hence A lies on two known arcs (locus 7, § 11). The problem may
have two, one, or no solutions.
586. Theorem. The Lemoine point of a triangle is the point of inter-
section of the lines joining the midpoints of the sides of the triangle to the
midpoints of the corresponding altitudes.

The vertex A of the triangle and the foot P of the symmedian A P
separate harmonically the symmedian point K from the pole D of BC
with respect to the circumcircle (0) of ABC (§ 582); hence A' (A PKD)
=-1, where A' is the midpoint of BC. Now the altitude A A h is
parallel to A'D; hence A'K passes through the midpoint of AAh
(§ 351). Similarly for the other altitudes.
587. Theorem. The isotomic of the orthocenter of a triangle is the
Lemoine point of the anticomplementary triangle.

The altitude A'D' of the anticomplementary triangle A'B'C' of
ABC meets BC in the isotomic P of the foot D of the altitude AD of
ABC, and P bisects the altitude A'D'. On the other hand A is
the midpoint of B'C'. Thus in the triangle ABC the line A P is the
isotomic of AD, and in the triangle A'B'C' the line AP joins the
midpoint A of the side B'C' to the midpoint P of the altitude A'D'.
Similarly for BQ and CR. Hence the proposition (§ 586).

EXERCISES

1. If DEF is the orthic triangle of ABC, show that the symmedian points of the
triangles AEF, BFD, CDE lie on the medians of ABC.

2. Given the triangle ABC, show that there are three other triangles A'BC, B'CA,
C'AB having a side in common with ABC and the same Lemoine point K as
ABC. Prove that the lines AA', BB', CC' are concurrent.

3. Show that the distances of the vertices of a triangle from the Lemoine axis are
proportional to the squares of the respective altitudes.
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4. Construct a triangle given, in position, the projections of its Lemoine point upon
the three sides.

5. Construct a triangle given, in position, a vertex, the centroid, and the sym-
median point.

6. Construct a triangle ABC given, in position, the indefinite sides AB, AC and the
symmedian pomt K.

7. Show that the sides of the pedal triangle of the symmedian point of a given tri-
angle are proportional to the medians of the given triangle, and the angles of the
pedal triangle are equal to the angles between the medians of the given triangle.

8. If through the vertices of a triangle perpendiculars are drawn to the medians
of the triangle, show that the symmedian point of the triangle thus formed
coincides with the centroid of the given triangle.

9. Through the vertices B, C of the triangle ABC parallels are drawn to the tangent
to the circumcircle (0) at A, meeting AC, AB in A', A". The line A'A" meets
BC in U. Show that AU and its analogues BV, CW are concurrent.

10. If on each side of a triangle as base a square is constructed external to the tri-
angle, the lines joining the vertices of the triangle formed by the external sides of
the three squares, extended, to the corresponding vertices of the basic triangle meet
in a point. (This point coincides with the Lemoine point of the basic triangle.)

c. THE LEMOINE CIRCLES

588. Theorem. The three parallels to the sides of a triangle through the
Lemoine point determine on these sides six concyclic points.

Let the three parallels EKF', D'KF, DKE' to the sides BC, CA, AB
of the triangle ABC (Fig. 141) through the symmedian point K inter-

A
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sect these sides in the points D, D'; E, E'; F, P. Since AFKE is a
parallelogram, the line E'F is bisected by the symmedian AK and is
therefore antiparallel to BC (§ 564 b), hence also to EF', i.e., the four
points E, E', F, F' lie on a circle.
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For analogous reasons the same holds for the groups of points
F, F', D, D' and D, D', E, E'. Now if these three circles are distinct,
their radical axes DD' = BC, EE' = CA, FF' = AB must meet in a
point (§ 425), which is clearly not the case. On the other hand, if
two of these circles coincide, the third obviously coincides with them.
We conclude that the points D, D', E, E', F, F' are concyclic.
589. Definitions. The circle of these six points (§ 588) is known as
the first Lemoine circle of the triangle.

The parallels considered are often called the Lemoine parallels.
590. Theorem. The center of the first Lemoine circle of a triangle lies
midway between the circumcenter and the Lemoine point of the triangle.

Let 0 be the circumcenter of triangle ABC (Fig. 141), L the mid-
point of OK, and M the common midpoint of AK and E'F. The line
ML joins the midpoints of two sides of the triangle KOA and is there-
fore parallel to the third side OA; but the circumradius OA is perpen-
dicular to E'F, for E'F is antiparallel to BC (§§ 185, 188, 588); hence
ML is the mediator of E'F. Similarly the mediators of DF' and D'E
pass through L. Hence the proposition.
591. Remark. The triangles DEF, D'E'F' are congruent.

Indeed, in the first Lemoine circle we have (Fig. 141):

L FDE = FF'E = B, L DEF = DD'F = C;

hence the triangle DEF is similar to ABC, and the same holds for the
triangle F'D'E'. Thus the two triangles DEF, F'D'E' are similar and
are inscribed in the same circle; hence they are congruent.
592. Theorem. The segments intercepted on the sides of a triangle by
the first Lemoine circle are proportional to the cubes of the respective sides.

If A A h, KX are the two perpendiculars from A and K upon BC
(Fig. 141), we have, in the similar triangles ABC, KDD':

DD':KX = BC:AAh = BC2:2S,

where S is the area of ABC. Now KX and the two analogous dis-
tances are proportional to the respective sides of ABC (§ 574); hence
the proposition.
593. Theorem. The three antiparallels to the sides of a triangle through
the Lemoine point of the triangle determine on the respective pairs of non-
corresponding sides six points lying on a circle whose center coincides
with the Lemoine point.
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The three antiparallels are equal (§ 570) and are bisected by the
symmedian point K (§ 564); hence K is equidistant from the ends of
these antinarallels and is therefore the center of a circle passing
through the six points considered (Fig. 142).
594. Definitions. The three antipara]lels considered (§ 593) are
often referred to as the Lemoine antiparallels.

The circle is known as the second Lemoine circle, or the cosine circle,
of the triangle. The latter name is due to the following property of
this circle.
595. Theorem. The segments intercepted on Ike sides of a triangle by
the second Lemoine circle are proportional to the cosines of the respectively
opposite angles of the triangle.

A

FIG. 142

Let the three antiparallels EKF', D'KF, DKE' (Fig. 142) to the
sides BC, CA, AB of the triangle ABC through the symmedian point
K meet these sides in the points D, D'; E, E'; F, P. The antiparallel
DE being a diameter of the circle (K) (§ 593), we have in the right
triangle D'DE':

Similarly :
DD' = DE' cos D'DE' = DE' cos A.

EE' = EF' cos B, FF' = FD' cos C.

But DE' = EF = FD' (§ 593); hence the proposition.
596. Theorem. The second Lemoine circle is bisected by the first
Lemoine circle.
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Through the symmedian point K of ABC draw the parallel B'C' and
the antiparallel B"C" to BC, in the angle A. The four points B', C',
B", C" being cyclic, we have:

KB' KC' = KB" KC",

i.e., the point K belongs to the radical axis of the two Lemoine circles.
Now K is the center of the second Lemoine circle; hence the proposi-
tion.

EXERCISES

1. Show that the segments E'F, F'D, D'E (Fig. 141) are equal.
2. Show that the lines E'F, F'D, D'E produced (Fig. 141) form a triangle whose

incircle is concentric with the first Lemoine circle of ABC and equal to the nine-
point circle of ABC.

3. Show that the sum of the areas A E'F, BF'D, CD'E (Fig. 141) is equal to the area
DEF.

4. Show that the lines E'F, F'D, D'E meet BC, CA, AB respectively (Fig. 141) on
the radical axis of the circumcircle and the first Lemoine circle of the triangle
ABC.

5. Show that the radical axis of the first Lemoine circle and the nine-point circle of a
triangle passes through the points in which the Lemoine parallels meet the cor-
responding sides of the orthic triangle.

6. Show that the radical axis of the second Lemoine circle and the nine-point circle
of a triangle passes through the points in which the Lemoine antiparallels meet
the corresponding sides of the medial triangle.

C. THE APOLLONIAN CIRCLES

597. Definition. The interior and exterior bisectors of the angles
A, B, C of a triangle ABC meet the opposite sides BC, CA, AB in the
points U, U'; V, V'; W, W', respectively. The circles on UU', VV',
WW' as diameters are called the Apollonian circles, or the circles of
Apollonius, of the triangle ABC (Fig. 143).
598. Theorem. The Apollonian circles pass through the respective ver-
tices of the triangle.

The circle (L) on UU' as diameter is the locus of points the ratio
of whose distances from the points B, C is equal to the ratio (locus 11,
§ 11):

BU:CU = BU':CU'.

Now AB:AC = BU:CU; hence A is a point on the locus. Similarly
for the other two Apollonian circles (M), (N).
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OTHERWISE. The segment UU' subtends a right angle at the point
A and therefore A lies on the circle (L).

Similarly for the other two Apollonian circles (M), (N).
599. Theorem. The circumcircle of a triangle is orthogonal to the three
Apollonian circles of the triangle.

We have (BCUU') = - 1; therefore the points B, C are inverse with
respect to the circle (L) (Fig. 143); hence (L) is orthogonal to the cir-
cumcircle (0) of ABC (§ 369). Similarly for the circles (M), (N).
600. Theorem. The three Apollonian circles of a triangle have two points
in common.

The Apollonian circle (M) passes through the vertex B, which point
lies inside the circle (L); hence the two circles (L), (M) intersect
(Fig. 143). Similarly for the pairs of circles (L) and (N), (M) and (N).

Now if J is one of the two points common to (L), (M), we have
(§ 598):

hence:

JA:JC = BA:BC, JB:JC = BA:CA;

JA:JB = CA:CB,

i.e., the point J also belongs to the circle (N).
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OTHERWISE. The circles (L), (M), (N) being orthogonal to the cir-
cumcircle (0) of ABC (§ 599), their centers L, M, N are the traces of
the tangents to (0) at A, B, C on the sides BC, CA, AB. Now
L, M, N are collinear (§ 319) and lie on the Lemoine axis of ABC
(§ 576); consequently the circles (L), (M), (N) are coaxal (§ 458).
This coaxal pencil is of the intersecting type, for the conjugate coaxal
pencil determined by (0) and the line LMN is of the nonintersecting
type, since the Lemoine axis LMN does not cut the circumcircle (§ 577).
601. Definition. The two points J, J' common to the three Apollo-
nian circles of a triangle are called the isodynamic points of the
triangle.
602. Theorem. The isodynamic points of a triangle lie on the Brocard
diameter of the triangle.

The radical axis JJ' of the three Apollonian circles is perpendicular
to their line of centers, i.e., to the Lemoine axis of the triangle, and
passes through the circumcenter 0 (§ 428 a); hence the proposition
(§ 579).
603. COROLLARY. The isodynamic points are inverse with respect to
the circumcircle and divide the Brocard diameter harmonically (§ 448).
604. Theorem. The Apollonian circles of a triangle are the circles of
similitude of the three circles, taken in pairs, whose centers are the vertices
of the given triangle and whose radii are proportional to the respective
altitudes of the triangle.

We have (§ 598) (Fig. 143):

BU:CU = AB:AC = hb:h, = khb:kh,,,

where k is an arbitrary factor. Thus U is the internal center of simili-
tude of the two circles (B, khb), (C, khs), and U' is therefore their ex-
ternal center of similitude.

Similarly V and V', W and W' are the centers of similitude of the
pairs of circles (C, kh.) and (A, kha), (A, kha) and (B, khb).
605. Remark. The properties of §§ 599, 600 are immediate con-
sequences of this proposition (§§ 496 if., § 604).
606. Theorem. The common chord of the circumcircle and an Apollo-
nian circle of a triangle coincides with the corresponding symmedian of
the triangle.

The circumcircle (0) (Fig. 144) and an Apollonian circle, say, (L)
are orthogonal (§ 599); hence their common chord is the polar of the
center L of (L) with respect to (0); hence the proposition (§ 561).
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607. COROLLARY. The traces of the symmedian of a triangle on the
circumcircle lie also on the respective Apollonian circles of the tri-
angle.
608. Theorem. The polar of the circumcenter of a triangle with respect
to an Apollonian circle coincides with the corresponding symmedian of
the triangle.

Indeed, the common chord of the two orthogonal circles (0) and (L)
(§ 606) is also the polar of 0 with respect to (L).
609. COROLLARY. The isodynamic points of a triangle are separated
harmonically by the circumcenler and the Lemoine point of the triangle.
610. Remark. The pole of the Brocard diameter with respect to an
Apollonian circle of the triangle is the trace on the Lemoine axis of the
symmedian through the vertex considered.

Indeed, the pole of the Brocard diameter OK with respect to the
circle (L) lies on the diameter LMN of (L) perpendicular to OK and
on the polar AK of the point 0 of OK with respect to (L).
611. Observation. Let A', B', C' (Fig. 144) be the points in which
the symmedians AKA', BKB', CKC of the triangle ABC meet the
circumcircle (0). Thus (0) cuts the Apollonian circles (M), (N) in
the four points B, B', C, C' and is orthogonal to these circles (§ 599);
hence of the three pairs of lines BB' and CC', BC and B'C', BC' and
B'C one pair, namely the first, intersects on the radical axis OK of the
circles (M), (N) (§ 437), in the point K, and the remaining two pairs
intersect in the centers of similitude of (M), (N), which centers of
similitude lie on the line of centers of the two circles, i.e., on the
Lemoine axis LMN of ABC.
612. Theorem. The center of an Apollonian circle of a triangle is a
center of similitude of the other two Apollonian circles of the triangle.

Indeed, one of the centers of similitude of the two circles (M), (N)
(Fig. 144) lies on the line BC and on the Lemoine axis LMN of ABC
(§ 611), and these two lines have in common the center L of the third
Apollonian circle (L) of ABC.
613. COROLLARY. A symmedian of a triangle meets the Lemoine axis
in a center of similitude of the two Apollonian circles relative to the other
two vertices of the triangle.

The second center of similitude L' (Fig. 144) of the circles (M), (N)
is harmonically separated from L by the centers M, N; hence the
line AL' is harmonically separated from AL by the lines A BN, ACM,
i.e., AL' is the symmedian issued from A (§ 562).
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614. Theorem. The traces of two symmedians of a triangle on the cir-
cumcircle are collinear with the center of the Apollonian circle passing
through the third vertex.

Indeed, the lines BC, B'C' (§ 611) (Fig. 144) meet the Lemoine
axis in the same point L (§ 612).
615. Theorem. The two lines joining two vertices of a triangle to the
traces of their symmedians on the circumcircle meet at the trace of the
third symmedian on the Lemoine axis of the triangle.

The lines BC', B'C meet in the center of similitude L' of the two
Apollonian circles (M), (N) (§ 611), and this point is also the trace of
the symmedian AKA' on the Lemoine axis LMN (§ 613).
616. Theorem. The three traces of the symmedians of a triangle on its
circumcircle determine a triangle having the same Apollonian circles as
the given triangle.
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The Apollonian circle (L,) of A'B'C' passing through A' must be
orthogonal to (0) (Fig. 144) and have its center on the tangent to (0)
at A' and on the line B'C'. Now both these lines pass through the
point L (§§ 606, 614); hence (Lo) is identical with the circle (L) of
ABC. Similarly for the circles (M), (N).
617. COROLLARY. The two triangles considered have the same symmed-
ians, the same Lemoine point, the same Lemoine axis, and the same
isodynamic points.
618. Definition. A triangle and the triangle having for vertices
the traces of the symmedians of the first on its circumcircle are called
cosymmedian triangles. The name is justified by their properties
(§ 617).

Two cosymmedian triangles are perspective, the center and axis of
perspectivity being the Lemoine point and the Lemoine axis of both
triangles.
619. Theorem. A symmedian meets the corresponding side of the tri-
angle in the Lemoine point of the triangle having for one vertex the corre-
sponding vertex of the cosymmedian triangle, and for the remaining two
vertices the isodynamic points of the two cosymmedian triangles con-
sidered.

The circumcircle (0) of ABC (Fig. 144) is the Apollonian circle of
the triangle A'JJ' relative to the vertex A', for (0) passes through A',
is orthogonal to the circumcircle (L) of A'JJ', and has its center on
the side JJ' opposite A'. The common chord A'A of (0) and (L) is
therefore a symmedian of the triangle A'JJ' (§ 606).

If P is the trace of the symmedian A A' on BC, we have (LPBC) =
-1; hence N'(LPBC) = -1. But the lines N'B and N'C are identi-
cal with N'BA' and N'CC'K (§ 615); hence (A'KL'P) = -1. Now
L' is the pole of the side JJ' of the triangle A'JJ' for the circumcircle
(L) of A'JJ' (§ 610); hence the harmonic conjugate P of L' with re-
spect to the vertex A' and the trace K of A'L' on the opposite side JJ' is
the Lemoine point of A'JJ' (§§581, 582), which proves the proposition.
620. Remark. The traces Q, R of the symmedians BK, CK of ABC on
CA, AB are the Lemoine points of the triangles BUY, CJJ'. The
traces P', Q', R' of the symmedians AA'K, BB'K, CC'K on the sides
B'C', C'A', A'B' of the cosymmedian triangle are the Lemoine points
of the triangles AJJ', BJJ', CJJ'.
621. Theorem. The isodynamic points of a triangle and one vertex of
that triangle determine a second triangle whose isodynamic points are
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those vertices of the cosymmedian triangle of the given triangle which do
not correspond to the vertex of the given triangle considered.

The line joining the circumcenter L of the triangle A'JJ' (Fig. 144)
to the Lemoine point P of A'JJ' (§ 619) is the Brocard diameter of
A'JJ'; hence LP meets the Apollonian circle (0) of A'JJ' in the iso-
dynamic points B, C of A'JJ', which proves the proposition.
622. Remark. The Lemoine axis of the triangle A'JJ' (§ 621) is
perpendicular to the Brocard diameter LP and passes through the
center 0 of the Apollonian circle (0) of A'JJ'; hence the Lemoine axis
of A'JJ' is the mediator of BC.

Thus the Lemoine axes of the six triangles JJ'A', JJ'B', JJ'C', JJ'A,
JJ'B, JJ'C have a point in common.
623. Problem. Construct a triangle given, in position, the symmedian
point, the circumcenter, and one vertex (K, 0, A).

Let the line AK meet the circle (0, OA) again in A' (Fig. 144). If
L' is the harmonic conjugate of K with respect to A, A' (§ 577) and P
the harmonic conjugate of L' with respect to K, A' (§ 619), the line
joining P to the pole L of AK with respect to the circle (0, OA) meets
this circle in the two remaining vertices of the required triangle ABC.

The problem has one and only one solution, assuming that K lies
inside the circle (0, OA).
624. Theorem. An Apollonian circle of a triangle makes an angle of
120° with each of the remaining two circles.

The point L (Fig. 144) is a center of similitude of the two Apollonian
circles (M), (N) (§ 612), and the circle (L) is coaxal with (M), (N);
hence these two circles are inverse with respect to (L) (§§ 527, 543),
and therefore the angle between (L), (M) is equal to the angle between
(L), (N), i.e., (L) bisects the angle between the circles (M), (N).
Similarly for the circle (M) with respect to (L), (N), and again for the
circle (N) with respect to (L), (M). Thus each of the Apollonian
circles bisects the angle between the remaining two (§ 531); hence the
proposition.

EXERCISES

1. Show that the mediators of the internal bisectors of the angles of a triangle meet
the respective sides of the triangle in three collinear points.

2. If in the triangle ABC we have BC > CA > AB, show that the sum of the
reciprocals of the diameters of the Apollonian circles relative to BC and AB is
equal to the reciprocal of the diameter of the Apollonian circle relative to CA.
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3. Show that the distances from the vertices of a triangle to an isodynamic point are
proportional to the respectively opposite sides.

4. Construct three circles so that the center of each shall be on the circle of similitude
of the other two.

5. Show that the median through a given vertex of a triangle meets the Apollonian
circle passing through the vertex considered and the circumcircle in two points
which, with the other two vertices of the triangle, determine a parallelogram.

6. Show that the symmetrics of the Apollonian circles of a triangle with respect to
the mediators of the corresponding sides of the triangle are coaxal, their radical
axis passing through the circumcenter of the triangle.

D. ISOGONAL LINES

625. Definition. Two lines passing through the vertex of a given
angle and making equal angles with the bisector of the given angle are
said to be isogonal or isogonal conjugates.

Thus the altitude and the circumdiameter issued from the same
vertex of a triangle are a pair of isogonal lines (§ 73 b). Another ex-
ample of two isogonal conjugate lines is furnished by the median and
the symrnedian issued from the same vertex of a triangle (§ 558).

A bisector of an angle coincides with its own isogonal conjugate for
that angle.
626. Theorem. The line joining the traces, on the circumcircle of a tri-
angle, of two isogonal lines of an angle of the triangle is parallel to the
side opposite the vertex considered.
627. Theorem. The line joining the two projections of a given point
upon the sides of an angle is perpendicular to the isogonal conjugate of
the line joining the given point to the vertex of the angle.

Those are generalizations of the propositions relative to symmedians
(§§ 559, 568). The proofs remain the same.
628. Theorem. The distances, from the sides of an angle, of two points
on two isogonal lines are inversely proportional.

Let M, N be two points on the two isogonal lines AM, AN (Fig.
145), MQ, MP, NR, NS the four perpendiculars from M, N to the
sides AB, AC of the angle BAC.

From the two pairs of similar right triangles AMQ and ANS, AMP
and ANR we have:

(a) MQ:NS = AQ:AS = AM:AN = AP:AR = MP:NR,
and the proposition follows from the equality of the first and last
ratios.
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A

FIG. 145

629. COROLLARY. The product of the distances of two points on two
isogonal lines from one side of the angle is equal to the product of their
distances from the other side of the angle.

Indeed, we have (§ 628) :

MP-NS =

630. Converse Theorem. If the distances of two points from the sides
of a given angle are inversely proportional, the points lie on two isogonal
conjugate lines.

We have, by hypothesis (Fig. 145):

MP: MQ = NR:NS,

and the angles M, N are supplementary to the angle A; hence the two
triangles MPQ, NRS are similar, and therefore the angles QPM, NRS
are equal. Now from the two cyclic quadrilaterals APMQ, ARNS
we have:

LQAM = QPM, LNAS = NRS;

hence the proposition (§ 625).
631. Theorem. The four projections upon the two sides of an angle of
two points on two isogonal conjugate lines are concyclic.

Indeed, we have, from the formula (a) (§ 628):

AP- AS;

hence P, Q, R, S are concyclic.
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632. COROLLARY. The two lines PQ, RS are antiparallel with respect
to the sides of the angle PAQ.
633, Remark. The circle PQRS (§ 631) has for its center the midpoint
of MN (Fig. 145)

The center of the circle considered is the point common to the medi-
ators of the segments QR and PS, and each of these mediators passes
through the midpoint 0 of MN.
634. Theorem. If two lines are anti parallel with respect to an angle, the
perpendiculars dropped upon them from the vertex are isogonal in the
angle considered.

If PQ, RS are two antiparallels in the angle PAQ (Fig. 145), and
U, V the feet of the perpendiculars from A upon PQ, RS, the right
triangles A UP, ARV have their angles P, R equal; hence the angles
PA U, RA V are equal, which proves the proposition.

EXERCISES

1. The isogonal conjugate of the parallel through A to the side BC of the triangle
ABC meets BC in M, and the symmedian AS meets BC in S. Show that
BM: CAI = BS:CS.

2. (a) Show that if M, N are the traces on BC of the two isogonal lines AM, AN, we
have b2:c2; (b) the isogonal conjugates of the three lines
joining the vertices of a triangle to the points of intersection of the respectively
opposite sides with a transversal meet these sides in three collinear points.

3. Show that the line joining a given point to the vertex of a given angle has for its
isogonal line the mediator of the segment determined by the symmetrics of the
given point with respect to the sides of the angle.

4. Two triangles ABC, A'B'C' are perspective and inscribed in the same circle (0);
if A", B", C" are the traces, on BC, CA, AB, of the isogonal conjugates of the
lines A'A, B'B, C'C, show that the lines AA", BB", CC" are concurrent.

5. If P is the point common to the circumcircles of the four triangles determined by
four given lines (§ 297), show that the isogonal conjugates of the six lines joining
P to the points of intersection of the given four lines are parallel.

6. Given two isogonal conjugate lines, if the segment determined on one of them
by the vertex considered and the opposite side of the triangle is multiplied by the
chord intercepted on the other line by the circumcircle, show that the product
is equal to the product of the two sides of the triangle passing through the vertex
considered.

7. Show that the four perpendiculars to the sides of an angle at four concyclhc points
form a parallelogram whose opposite vertices lie on isogonal conjugate lines with
respect to the given angle.

635. Theorem. The isogonal conjugates of the three lines joining a given
point to the vertices of a given triangle are concurrent.
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Let M' (Fig. 146) be the point of intersection of the isogonals AM',
BM' of the lines AM, BM. We have (§ 628):

ME:MF = MW: WE, MF:MD = M'D':M'F;
hence, multiplying:

ME: MD = MW: WE,

i.e., the lines CM, CM' are isogonal conjugates (§ 630); hence the
proposition.
636. Definition. The points M, M' are said to be isogonal conjugate
points, or isogonal points with respect to the triangle ABC.

A

Thus the orthocenter and the circumcenter are a pair of isogonal
conjugate points with respect to the triangle; the centroid and the
symmedian point are another.

A tritangent center of a triangle coincides with its own isogonal con-
jugate for that triangle.
637. COROLLARY. The perpendiculars dropped from the vertices of a
triangle upon the corresponding sides of the pedal triangle of a given
point are concurrent.

Indeed, the lines AM', BM', CM' (Fig. 146) are perpendicular to
EF, FD, DE (§ 627).
638. Remark. If the point M (§ 635) lies on the circumcircle of the
triangle, the isogonal lines of AM, BM, CM are parallel. Conversely,
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if the isogonal conjugates of the lines AM, BM, CM are parallel, the
point M lies on the circumcircle of the triangle.

If X, Y, Z are the projections of M upon the sides of ABC, the
isogonal conjugates p, q, r of AM, BM, CM are perpendicular to the
lines YZ, ZX, X Y (§ 627). Now if M lies on the circumcircle (0) of
ABC, the points X, Y, Z are collinear (§ 282 a); hence p, q, r are
parallel.

Conversely, if p, q, r are parallel, the same holds for YZ, ZX, XY
(§ 627), i.e., the points X, Y, Z are collinear, and therefore M lies on
(0) (§ 282 b).
639. Definition. The perpendiculars erected at the vertices of a tri-
angle to the lines joining these vertices to a given point form a triangle
called the antipedal triangle of the given point with respect to the given
triangle.
640. Theorem. If two points are isogonal for a triangle, the pedal tri-
angle of one is homothetic to the antipedal triangle of the other.

If E, F are the feet of the perpendiculars from the given point M
upon the sides AC, AB of the triangle ABC, the line EF is perpendicu-
lar to the isogonal conjugate of AM in the angle A (§ 627), which line
passes through the isogonal conjugate M' of M for ABC; hence the
line EF is parallel to the side of the antipedal triangle of M' passing
through A.

Similarly for the other pairs of sides of the pedal triangle of M and
the antipedal triangle of W. Hence the proposition.
641. Theorem. The six projections of two isogonal conjugate points
upon the sides of a triangle are concyclic.

The six projections lie by fours on circles having for centers the mid-
point of the segment determined by the given isogonal points (§§ 631,
633); hence the three circles are identical.
642. Definition. This circle (§ 641) is often referred to as the pedal
circle of the two isogonal conjugate points.
643. Converse Theorem. The circumcircle of the pedal triangle of
a point for a given triangle cuts the sides of the given triangle again in the
vertices of the pedal triangle of a second point, which point is the isogonal
conjugate of the first point with respect to the given triangle.

Let (L) be the circle circumscribing the pedal triangle XYZ of the
point M for the triangle ABC. If X'Y'Z' is the pedal triangle for
ABC of the isogonal conjugate M' of M for ABC, the six points
X, Y, Z, X', Y', Z' lie on a circle (§ 641) which is identical with (L),
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for the two circles have the three points X, Y, Z in common. Hence
the proposition.
644. Theorem. If two points are isogonal with respect to a triangle,
each is the center of the circle determined by the symmetries of the other
with respect to the sides of the triangle.

Let D, E, F be the projections of the point M upon the sides of the
triangle ABC, and D', E', F' the symmetries of M with respect to the
sides of ABC.

The point M is the homothetic center of the two triangles DEF,
D'E'F', the homothetic ratio being 1: 2; hence if L, L' are the circum-
centers of DEF, D'E'F', we have ML: MV = 1:2, i.e., L' is the sym-
metric of M with respect to L and therefore L' coincides with the
isogonal conjugate M' of M for ABC (§ 641).
645. Theorem. The radical center of the three circles having for diam-
eters the segments intercepted by a given circle on the sides of a triangle is
the isogonal conjugate of the center of the given circle with respect to the
triangle.

Let D, E, F be the midpoints of the segments intercepted by a circle
(M) on the sides BC, CA, AB of the triangle ABC, and let (D), (E), (F)
be the circles having the intercepted segments for diameters

The lines A B, AC are the radical axes of the circles (M) and (F), (M)
and (E), hence the point A lies on the radical axis of the circles (E), (F)
(§ 425). Thus the radical axis of (E), (F) is the perpendicular dropped
from A upon the side EF of the pedal triangle DEF of Al for ABC.
Similarly for the radical axes of (F) and (D), (D) and (E). Hence the
proposition (§ 637).
646. Theorem. If two isogonal conjugate points for a triangle are col-
linear with the circumcenter, their pedal circle is tangent to the nine-point
circle of the triangle.

If X, Y are the ends of a circumdiameter of a triangle ABC, the
simsons x, y of X, Y are perpendicular and the point L = xy lies on
the nine-point circle (N) of ABC (§ 295). The projections X', Y' of
X, Y upon BC lie on x, y, respectively, and are symmetrical with re-
spect to the midpoint A' of BC, hence the circle (X'Y') having X'Y'
for diameter passes through L.

Let P, P be any two points of the diameter X Y, and D, D' their
projections upon BC. If 0 is the circumcenter and R the circum-
radius of ABC, we have:

A'D-A'X' = OP -R, A'D':A'X' = OP':R;



Ch. X, § 646, 647, 648] ISOGONAL LINES 273

hence, multiplying:

AT A'D' : A'X'2 = OP OP' :R2,
or, since L lies on (X' Y') :

The right-hand side of this proportion does not depend upon the
side BC considered; neither does the point L = xy; hence we have,
denoting by B', C' the midpoints of AC, AB, and by E, E'; F, F the
projections upon these sides of the points P, P':

(a)

Now suppose that P, P' are isogonal conjugates for ABC. The
six projections D, D', ... of P, P' he on a circle (S) (§ 641), and the
products A'D A'D', ... represent the powers of the points A', B', C'
for (S). If we consider A'L2, . . . as the powers of the points A', B', C'
for the point-circle (L), it follows from the formula (a) that the circle
(N) is coaxal with the circles (S), (L) (§ 475); hence the center N of
(N) is collinear with L and the center S of (S). Moreover, since the
point L lies on (N), the radical axis of the coaxal system is the tangent
to (N) at L; therefore the circle (S) passes through L and is thus
tangent to (N) at L. Hence the proposition.
647. COROLLARY. If the isogonal points P, P' coincide in a tritangent
center of ABC (§ 634), the circle (S) coincides with the corresponding
tritangent circle; hence: Each trilangent circle of a triangle touches the
nine-point circle of that triangle.

This is Feuerbach's theorem (§ 215).
648. Remark. It follows from the proof of the preceding theorem
(§ 644) that the Feuerbach point (§§ 214, 215) relative to a given tri-
tangent circle is the point of intersection of the simsons of the ends of
the circumdiameter passing through the corresponding tritangent
center. The Feuerbach points may thus be located without making
use of either the nine-point circle or the tritangent circles.

EXERCISES

1. Given two isogonal points for a triangle, show that the product of their distances
from a side of the triangle is equal to the analogous product for each of the other
two sides.

2. Show that the sum of the angles subtended by a side of a triangle at two isogonal
points is equal to a straight angle increased by the angle of the triangle opposite
the side considered.
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3. Show that the vertices of the tangential triangle of ABC are the isogonal con-
jugates of the vertices of the anticomplementary triangle of ABC.

4. Show that the lines joining the vertices of a triangle to the projections of the
incenter upon the mediators of the respectively opposite sides meet in a point
- the isotomic conjugate of the Gergonne point of the triangle.

5. Show that the three symmetrics of a given circle with respect to the sides of a tri-
angle have for radical center the isogonal point of the center of the given circle
with respect to the triangle.

E. BROCARD GEOMETRY

a. THE BROCARD POINTS

649. Definition. Consider the circle (AB) passing through the
vertices A, B of the triangle ABC (Fig. 147) and tangent at B to the
side BC. Similarly a circle (BC) may be described on the side BC

FIG. 147

tangent at C to CA, and again a circle (CA) on CA tangent at A to
AB. These three circles will be referred to as the direct group of ad-
joint circles.

Taking the vertices A, B, C by twos in the circular permutation
BAC, we obtain the indirect group of adjoint circles (BA), (AC), (CB),
the circle (BA) being described on the side BA, tangent at A to the
side AC, and similarly for the other two circles.
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650. Theorem. The three adjoint circles of the direct group have a
point in common.

The two circles (A B), (BC) have the point B in common (Fig. 147);
hence they meet in another point M, inside the triangle ABC. Now
the circle (AB) being tangent to BC at B, angle AMB = 180° - B,
and similarly angle BMC = 180° - C, hence:

LAMC=360°- (180°-B)- (180°-C)=B+C= 180°-A.
Thus the point M belongs also to the arc of the circle (CA) which lies
inside of ABC; hence the proposition.
651. Theorem. The three adjoint circles of the indirect group have a
point N in common.

The proof is similar to the proof of the preceding proposition (§ 650).
652. Definition. The two points M, N (§§ 650, 651) are known as
the Brocard points of the triangle. They are frequently denoted by
the letters f2, S2'.
653. Theorem. (a) Angle MAB = angle MBC = angle MCA, and
the point M is the only one having this property.

(b) Angle NA C = angle NCB = angle NBA, and the point N is the
only one having this properly (Fig. 147).

The angle MAB inscribed in the circle (AB) is measured by half the
arc BM, and the angle MBC formed by the chord BM and the tangent
BC to the same circle is also measured by half the arc BM; hence these
angles are equal. Similarly for the angles MBC and MCA.

Now if M' is any other point such that angle M'AB = M'BC, the
circle through the points M', A, B will be tangent to BC at B, i.e.,
M' will be a point of the circle (AB). Similarly, in order to satisfy
the condition angle M'BC = M'CA, the point M' will have to lie on
(BC); hence M' is identical with M. Similarly for part (b)
654. Theorem. The Brocard points are a pair of isogonal points of
the triangle.

If N' is the isogonal conjugate of the Brocard point M (Fig. 147),
we have

and

L MAB = N'AC, L MBC = N'BA, L MCA = N'CB,

L MAB = MBC = MCA;
hence:

ZN'AC = N'BA = N'CB,
i.e., N' coincides with N (§ 653).
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655. Definition. The angle MAB = NAC (§ 654) is called the
Brocard angle of the triangle and is frequently denoted by w.
656. Construction. Given the triangle ABC (Fig. 148) and one circle
of the direct group of adjoint circles, say (CA), the Brocard point M
and the Brocard angle may be constructed as follows.

Through the point of contact A of (CA) draw a parallel to the op-
posite side BC meeting (CA) again in I. The line BI joining I to the
third vertex B meets (CA) again in the required point M, and IBC is
the Brocard angle of ABC.

Indeed, we have:

LMAB=MCA=MIA=MBC.
Similarly for the second Brocard point.
657. Remark I. In the triangles ACI, ACB (Fig. 148) we have angle
AIC = BAC, angle IAC = ACB; hence angle ACI = ABC; the
line CI is therefore tangent to the circumcircle (0) of ABC. Conse-
quently the point I may be determined by the parallel AI to BC and

FIG. 148

the tangent CI at C to the circumcircle (0) of ABC. Thus the Brocard
angle may be constructed without the aid of an adjoint circle; by
repeating this construction twice we may determine the Brocard point.
658. Remark II. Let D, J be the feet of the perpendiculars from A,
I upon BC (Fig. 148). We have:

BJ_BD DC CJ _CJ BD DC
IJ IJ + IJ + IJ IJ + AD + AD

or:

cot co = cot A + cot B + cot C.
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659. Theorem. The shape of a triangle is determined by one of its
angles and its Brocard angle.

Through the vertex A of the given angle BAC (Fig. 148) and
through an arbitrary point C of its side AC draw two lines AM, CM,
inside the angle A, making with the given sides AB, AC, respectively,
angles equal to the given Brocard angle w, and meeting in the point M.
If B is a point on the side AB at which the segment CM subtends an
angle equal to w, the triangle ABC has the given angle A and the
given Brocard angle w.

There are, in general, two points, B and B', on the side AB at which
CM subtends an angle w. The two triangles ABC and AB'C are in-
versely similar.
660. Problem. Construct a triangle given a side, an angle, and the
Brocard angle.

The two given angles determine a triangle similar to the required
triangle (§ 659); the required triangle is then readily obtained.
661. Theorem. The traces on the circumcircle of a triangle of the lines
joining the vertices to a Brocard point form a triangle congruent to the
given triangle.

Let the line Aft, BSZ, CS2, meet the circumcircle (0) of ABC in B', C',
A'. In the triangle A'B'C' (Fig. 149) we have:

L A' = B'A'C + C'A'C = B'AC + C'BC = B'AC + BAB' = A.
Likewise for the angles B' and C'. Thus the two triangles ABC,
A'B'C' are similar and inscribed in the same circle; hence they are
congruent.
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Similarly for the second Brocard point.
Observe that the triangle A'B'C' may be obtained from the triangle

ABC by a counterclockwise rotation of angle 2 co about the circum-
center 0 of ABC, for:

L AOA' = 2 ACA' = 2 w.

662. Remark. The point 9 is the second Brocard point of the triangle
A'B'C', for:

L12A'C'=CA'C'=CBC'=w;
likewise

L12C'B'=BC'B'=BAB'=w.

663. COROLLARY. The two Brocard points of a triangle are equidistant
from the circumcenter of the triangle.

In the two congruent triangles ABC, A'B'C', to the point 12' of ABC
corresponds the point 12 of A'B'C', hence the two points 12, St' are equi-
distant from the common circumcenter of the two triangles.
664. Theorem. The pedal triangle of a Brocard point is similar to the
given triangle.

Let L, M, N be the projections of the Brocard point Sl upon the
sides BC, CA, AB of the triangle ABC (Fig. 149). Taking into ac-
count the definition of the Brocard point and the two cyclic quadri-
laterals S2MAN and cNBL, we have, successively:

L A = 12AN + nAM = 12BL + OAM = QNL -I-12AM
= S1NL + 12NM = MNL.

Similarly for the other pairs of angles of ABC and MNL.
Likewise for 12'.

665. COROLLARY. The pedal triangles of the two Brocard points are
congruent.

For they are similar (§ 664) and have the same circumcircle (§ 654).

EXERCISES

1. Show that the antipedal triangles of the Brocard points are similar to the given
triangle.

2. Construct a triangle, given, in position, two indefinite sides and a Brocard point.
3. Show that (a) the triangles f2CA, S2'BA are similar (point out other pairs of similar

triangles); (b) A'l:AS2' = b:c (state two analogous formulas); (c)
C52 AO' = A2 B52'; (d) c CS2 = b BS2' (state two analogous formulas);
(e) As2: B12: Co = (b: a) : (c: b) : (a: c), and similarly for W.
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4. Let A' and A", B' and B", C' and C" be the points in which the lines joining the
vertices of a triangle ABC to the Brocard points meet the circumcirde of the
triangle, and K, K', K" the Lemoine points of the triangles ABC, A'B'C',
A"B"C". Prove that the lines KK', KK" pass each through a Brocard point
of ABC.

b. THE BROCARD CIRCLE

666. Definition. The circle (OK) having for diameter the segment
determined by the circumcenter 0 and the symmedian point K of a
triangle ABC is called the Brocard circle of ABC (Fig. 150).

The mediators of the sides BC, CA, AB meet the Brocard circle
(OK) again in the vertices A1, B1, C1 of Brocard's first triangle AiB1C1
of ABC.

The symmedians AK, BK, CK of ABC meet (OK) again in the
vertices A2, B2, C2 of Brocard's second triangle A2B2C2 of ABC.
667. Theorem. The Brocard points of a triangle lie on the Brocard
circle.

The angle KA10 is a right angle (Fig. 150); hence KA1 is parallel to
BC, and therefore A1A' is equal to the distance of K from BC. Thus
(§ 574) :

(1) A1A':BC = B1B':CA = C1C': AB.

Let us show that the point of intersection P of AC1 with BA1 lies on
the cirde (OK).
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From (1) it follows that the two isosceles triangles ABC,, BCA1 are
similar; hence:

L BATA' = AC1C' = PC1O.

Thus the points A1j C1 are concyclic with 0, P; hence P lies on (OK).
Again, considering the triangles BCA1, CAB1, it may be shown that
A1B and B1C meet on (OK). Hence the three lines A1B, B1C, C1A
meet in the same point P on (OK). Now from the similitude of the
three isosceles triangles A1BC, B1CA, C1AB we have:

L PAB = PBC = PCA;

hence P coincides with the Brocard point Q.
In a similar way we may show that the three lines B1A, A1C, C1B

meet on (OK) in the second Brocard point Sl'.
668. Remark. From the three similar isosceles triangles considered
(§ 667) we have:

AC1:AB1 = c:b, BA1:BC1= a:c, CA1:CB1 = a:b.

669. Theorem. The Brocard circle is concentric with the first Lemoine
circle of the triangle.

Indeed, both circles have for their center the midpoint of the seg-
ment determined by the circumcenter and the symmedian point of
the triangle (§§ 590, 666).
670. Theorem. (a) The Brocard circle of a triangle is orthogonal to the
Apollonian circles.

(b) The radical axis of the Brocard circle and the circumcircle coincides
with the Lemoine axis.

(a) The Lemoine point K is conjugate to the circumcenter 0 with
respect to each of the Apollonian circles of a triangle (§ 608); hence
the proposition (§§ 387, 666).

(b) The Brocard circle (OK) and the circumcircle (0) are both
orthogonal to the Apollonian circles of the triangle (§ 599); hence
(OK) and (0) determine the pencil (U) conjugate to the pencil (W)
formed by the Apollonian circles (§ 456). Thus the line of centers
of (W), i.e., the Lemoine axis (§ 600), is the radical axis of (U) (§ 455),
which proves the proposition.
671. Theorem. The Brocard circle is tangent to the radical axis of the
two Lemoine circles.

The line of centers of the two Lemoine circles lies on the Brocard
diameter of the triangle, and the radical axis of these two circles passes
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through the symmedian point of the triangle (§ 596); hence the propo-
sition.
672. Theorem. The lines joining the vertices of a triangle to the corre-
sponding vertices of the first Brocard triangle concur in the isotomic of
the Lemoine point with respect to the triangle.

The line A10A' (Fig. 150) passes through the pole U of BC with
respect to the circumcircle (0) of ABC, and so does the symmedian
AK (§ 560). Now if K' is the trace of AK on BC, the parallel KA1
to the ray A'K' of the harmonic pencil A'(AK'KU) meets A'A in the
midpoint of the segment KAI, i.e., the lines AA1, AK are isotomic.
Similarly for the pairs of lines BB1 and BK, CC1 and CK. Hence the
proposition.
673. Remark. The first Brocard triangle is perspective to the basic
triangle in three different ways, the centers of perspectivity being the
two Brocard points (§ 667) and the isotomic of the Lemoine point
(§ 672).
674. Theorem. Brocard's first triangle is inversely similar to the given
triangle.

Indeed, we have (Fig. 150) :

L A = BAKC1= BAAAC1,

for the sides of these angles are parallel; similarly for the other pairs
of angles of the two triangles.
675. Theorem. The centroid of a triangle is also the centroid of the first
Brocard triangle.

Let X be the symmetric of Al with respect to BC (Fig. 150). It is
readily seen that angle C1BX = B and we have (§ 668) :

BC1: BX = BCI: BA1 = c: a;

hence the triangles BC1X, ABC are similar. In like manner it may
be shown that the triangle CB1X is similar to ABC. Hence the two
triangles BC1X and CB1X are similar, But BX = CX; hence the two
triangles are congruent, and we have:

B1X = BC1 = ACAj C1X = CB1 = ABA.

Thus ACIXB1 is a parallelogram. Let U be the point of intersec-
tion of its diagonals B1C1, AX. The lines AA' and AAU are medians
of the triangle AA1X; hence they trisect each other, say in G. On the
other hand the lines AA', AAU are medians of the triangles ABC,
A1B1C1, respectively; hence G is the centroid of these two triangles.
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676. Problem. Construct a triangle given, in position, its first Brocard
triangle.

The required triangle, ABC is inversely similar to its given first
Brocard triangle A1B1C1 (§ 674), and the first Brocard triangle A'B'C'
of A1B1C1 is inversely similar to this triangle; hence the two triangles
ABC, A'B'C' are directly similar. Moreover, the angles (B1C1, B'C'),
(B1C1, BC) are equal; hence the lines BC, B'C' are parallel. Thus the
triangles ABC, A'B'C' are homothetic.

The triangles ABC, A1B1C1 have the same centroid (§ 675), and so
do the triangles A1B1C1, A'B'C'; hence the two triangles ABC, A'B'C'
have the same centroid G, which is therefore their homothetic center.
Furthermore, we have:

GA':GA1 = GA1:GA.

The segment GA may thus be determined and the point A located on
the line GA'. The points B, C may then be constructed as the corre-
sponding points of B', C' in the homothecy (G, GA :GA').
677. Theorem. The perpendiculars from the midpoints of the sides of
the first Brocard triangle upon the respective sides of the given triangle
meet in the nine-point center of the given triangle.

The perpendiculars from the midpoints of the sides of the triangle
A1B1C1 (Fig. 150) upon the sides of ABC are parallel to the lines OA1,
OBI, OC1; hence these perpendiculars meet in the complementary
point of 0 for the triangle A1B1C1, i.e., in a point 0' such that GO': GO =
-1: 2, where G is the centroid of A1B1C1. But G is also the centroid
of ABC (§ 675); hence 0' coincides with the nine-point center of ABC.
678. Theorem. The parallels through the vertices of a triangle to the
corresponding sides of the first Brocard triangle meet on the circumcircle
of the given triangle.

If the parallels through the vertices B, C of ABC to the sides A1C1,
A1B1 of the first Brocard triangle A1B1C1 (Fig. 150) meet in R, we
have:

L BRC = B1A1C1 = BAC;

hence R lies on the circumcircle (0) of ABC, the points R, A lying on
the same side of BC.

It is thus seen that the line BR is met by the parallels through C and
A in the same point R of (0).
679. Definition. The point R (§ 678) is called the Steiner point of
the triangle.
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680. COROLLARY. The perpendiculars dropped from the vertices of a
triangle upon the corresponding sides of the first Brocard triangle meet in
a point.

Indeed, these perpendiculars pass through the diametric opposite
N of the point R on (0).
681. Definition. The point N (§ 680) is called the Tarry point of the
given triangle.
682. Theorem. The vertices of the second Brocard triangle are the mid-
points of the segments determined by the circumcircle of the given triangle
on the symmedians, produced, of the given triangle.

The angle OA2K inscribed in the circle (OK) (Fig. 150) is a right
angle; hence OA2 is the perpendicular dropped from the circumcenter
0 upon the symmedian AK of ABC; hence the proposition.
683. Theorem. The direct and the indirect adjoint circles tangent to the
sides of the same angle of a triangle meet in the corresponding vertex of
the second Brocard triangle.

D

FIG. 161

Let U be the point of intersection of the two adjoint circles (CA),
(BA) (Fig. 151) of the triangle ABC, and let the lines AU, CU meet
the circumcircle (0) in D, E. We have:
(1) L UAB = ACU = ACE = ADE,

L UBA = CA U = CAD = CED.

Thus the three triangles UAB, UAC, UDE are similar. Now:

L BAD = BCD; hence LBCA = ECD,
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i.e., the chords AB, DE are equal, and therefore the triangles UAB,
UDE are congruent, and A U = UD.

In the similar triangles UAB, UAC the altitudes issued from U are
proportional to the sides AB, AC; hence U is a point on the sym-
median of ABC (§ 567) passing through A. Thus the proposition is
proved.

EXERCISES

1. Show that the polar of the circumcenter of a triangle for the second Lemoine
circle is the radical axis of this circle and the Brocard circle.

2. Show that the lines joining the vertices of a triangle to the corresponding vertices
of the first Brocard triangle divide the respective sides of the given triangle in
the inverse ratio of the squares of the other two sides.

3. Show that the Lemoine axis and the Brocard circle are inverse with respect to
the circumcircle of the triangle.

4. Show that the segments joining the symmedian point to the vertices of the first
Brocard triangle are bisected by the corresponding medians of the given triangle.

5. Show that the line joining the symmedian point K of a triangle to the nine-point
center 0' passes through the center Z' of the Brocard circle of the anticomple-
mentary triangle, and KO' = O'Z'.

6. Show that the circumcenter 0 of ABC, the Lemoine point K, of the medial tri-
angle A1B1Ci, and the circumcenter Z' of the anticomplementary triangle A'B'C'
are collinear, and OK1 = K1Z'.

7. Show that the symmedian point and the circumcenter of a triangle are the
Steiner point and the Tarry point of the first Brocard triangle.

8. Show that the Simson line of one point of intersection of the Brocard diameter
with the circumcircle of the triangle is either parallel or perpendicular to the
bisector of the angle formed by a side of the triangle and the corresponding side
of Brocard's first triangle.

F. TUCKER CIRCLES

684. Concyclic Points. With the Lemoine point K of the triangle
ABC (Fig. 152) as homothetic center a triangle A'B'C' is constructed
directly homothetic to ABC. Let the sides B'C', C'A', A'B' meet the
sides AC and AB, BA and BC, CB and CA in the points E and F,
F and D', D and E'.

Theorem. The six points D, E, F, D', E', F' are concyclic.
The diagonal E'F of the parallelogram AE'A'F is bisected, in U,

by the diagonal AA', i.e., by the symmedian AA'K of ABC; hence
E'F is antiparallel to BC. Similarly, F'D is antiparallel to AC, and
D'E to AB.



Ch. X, § 684, 685, 6861 TUCKER CIRCLES 285

The two parallel lines DD', EF' and the two antiparallels DF', D'E
to AC, AB, respectively, form an isosceles trapezoid; hence the four
points D, D', E, F' lie on a circle. Similarly, the points E, E', F, D'
lie on a circle, and also F, F', D, E. Now these three circles cannot

A

FIG. 162

all be distinct, for, if they were, their radical axes would be the lines
ED', FE', DF' which form a triangle, whereas the radical axes of three
distinct circles are concurrent (§ 425); hence at least two of these
circles coincide. But then the third circle coincides with them, and
the proposition is proved.
685. Definition. The circle (§ 684) is called a Tucker circle of the
triangle.

The homothetic ratio of the triangles ABC, A'B'C' may be taken
arbitrarily; hence the triangle ABC has an infinite number of Tucker
circles.

The value of the homothetic ratio is determined, if one of the
vertices of A'B'C', say A', is chosen on the corresponding symmedian
AK. If A' coincides with A, the corresponding Tucker circle coin-
cides with. the circumcircle of ABC. When A' coincides with K, i.e.,
when the antiparallels D'F,... are drawn through K, the correspond-
ing Tucker circle coincides with the first Lemoine circle of ABC.
686. Theorem. The centers of the Tucker circles lie on the Brocard
diameter of the given triangle.

The circumradius O'A' (Fig. 152) of the triangle A'B'C' is parallel
to the circumradius OA of ABC, and 0' is collinear with K and 0
(§ 47). Thus the parallel UT to OA through the midpoint U of AA'
passes through the midpoint T of 00'. Now OA is perpendicular to
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E'F (§§ 185, 188); hence UT is the mediator of the chord E'F of the
Tucker circle. Similarly the mediators of DF' and D'E pass through
T. Hence the proposition.
687. Theorem. The center T of the Tucker circle (§ 686) is the incenter
of the triangle A"B"C" formed by the lines E'F, F'D, D'E, produced.

The segments E'F, F'D, D'E are equal (§ 682); therefore these
chords of the Tucker circle are equidistant from the center T of this
circle, which proves the proposition.
688. Theorem. The triangle A"B"C" (§ 687) is homothetic to the
tangential triangle (Q) of ABC, the homothetic center being the Lemoine
point of ABC.

The antiparallels D'E, DF' to AB, AC being equal, their point of
intersection, i.e., the vertex A" of A"B"C", lies on the symmedian
AK of ABC (§ 569). Similarly for B", C". Now the lines D'E, E'F,
F'D are parallel to the sides of (Q), and the vertices of (Q) lie on the
symmedians of ABC (§ 560); hence the proposition.
689. Theorem. The six projections of the vertices of the orthic triangle
upon the sides of the given triangle are concyclic.

A

A'
FIG. 163

Let H be the orthocenter and DEF the orthic triangle of ABC
(Fig. 153). Let X, X' be the projections of E, F upon BC; Y', Y the
projections of D, F upon CA; and Z, Z' the projections of D, E upon
AB.

In the triangle AEF the line YZ' joins the feet of the altitudes EZ',
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FY; hence YZ' is antiparallel to EF, and since EF is antiparallel to
BC, the line YZ' is parallel to BC. Similarly for ZX' and X Y. Thus
the lines YZ', ZX', XY', extended, form a triangle A'B'C' homothetic
to ABC.

The line AA' bisects Y'Z, the two lines being the diagonals of the
parallelogram AZA'Y'. Now from the two similar triangles DY'Z,
&EF it follows that Y'Z is parallel to EF and therefore antiparallel
to BC; hence AA' is a symmedian of the triangle ABC. Similarly
for BB' and CC'.

Thus the homothetic center of the two triangles ABC, A'B'C' coin-
cides with the symmedian point K; hence the six points X, X', Y, Y',
Z, Z' lie on a circle (§ 684).
690. Definition. The circle (§ 689) is called the Taylor circle of the
triangle.

It follows from the proof that the Taylor circle belongs to the circles
of the Tucker group.

G. THE ORTHOPOLE

691. Theorem. The perpendiculars dropped upon the sides of a triangle
from the projections of the opposite vertices upon a given line are con-
current.

Let A', B', C' (Fig. 154) be the projections of the vertices A, B, C
of the given triangle ABC upon a given line m, and AA", B'B", CC"
the perpendiculars to the sides BC, CA, AB. If the lines B'B", C'C"
meet A'A" in M, N, and AA' meets BC in K, the two pairs of tri-
angles KA C and A'B'M, KA B and A'C'N have their sides respectively
perpendicular; hence:

A'M: A'B' = CK: AK, A'C' : A'N = AK:BK.

Now the lines AA', BB', CC' are parallel; hence:

A'B':A'C' = BK:CK.

Multiplying the three proportions, we obtain A'M = A'N; hence N
coincides with M, which proves the proposition.
692. Definition. The point M (§ 691) is the orthopole of the line m
with respect to, or, more briefly, for the triangle ABC.
693. Remark. The orthopoles of two parallel lines lie on a common
perpendicular to the two lines, and the distance between the ortho-
poles is equal to the distance between the parallel lines.
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A

V W
FIG. 154

m'

Indeed, the triangle M'VW (Fig. 154) may be obtained from the
triangle MB'C' by moving the vertices B', C' in the direction B'V a
distance equal to B'V = C'W.

It may also be observed that the distances of the two lines m, m'
from their respective orthopoles M, M' are equal.
694. Theorem. The orthopole, for a given triangle, of a circumdiameter
of that triangle lies on the nine-point circle of the triangle.

Let the perpendiculars AA', BB', CC' from the vertices of the
triangle ABC upon the circumdiameter d of ABC meet the circum-
circle (0) in the points A1,-B1, C1 (Fig. 155). The three perpendicu-
lars from A1, B1, C1 to the sides BC, CA, AB meet (0) in the same
point P, the pole of the Simson line perpendicular to d (§ 288).

The midpoint A' of the chord AA1 is equidistant from the altitude
AAh of ABC and the perpendicular A1P from Al to BC; hence the
perpendicular p from A' to BC bisects, in D, the segment PH joining
P to the orthocenter H of ABC. The perpendiculars q, r, from B', C'
to CA, AB pass through D, for analogous reasons; hence the point
D = pqr is the orthopole of the diameter d. Now D lies on the nine-
point circle of ABC (§ 291); hence the proposition.

It should be observed that we have incidentally proved the existence
of the orthopole of the diameter d, and therefore (§ 693) of any line.
695. COROLLARY. The line s through D parallel to A1A, or, what is
the same thing, perpendicular to d (Fig. 155), is the Simson line of the
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point P (§ 289). Now any line parallel to d will have its orthopole
on s (§ 693); hence: The orthopole of a line for a given triangle lies on
the Simson line perpendicular to the given line.
696. Remark. (a) The orthopole D (Fig. 155) of a circumdiameter
d of a triangle ABC may be constructed as follows.

FIG. 165

If the perpendicular from A to d meets d in A' and the circumcircle
in A 1, the parallel s to A A 1 through the projection U of A 1 upon BC
meets the perpendicular to BC through A' in the required orthopole D.

(b) If m is any line parallel to d, its orthopole M is the trace, on s
(§ 693), of the perpendicular to BC through the trace X of m on AA1.
697. Theorem. If a line meets the circumcircle of a triangle, the Simson
lines of the points of intersection with the circle meet in the orthopole of
the line for the triangle.

Let the line m meet the circumcircle (0) of ABC in Q, Q' (Fig. 155),
and let the perpendicular QL from Q to BC meet (0) in K and the
parallel IA, through Al to BC in I.
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Considering the two cyclic quadrilaterals A1XQI, AA1KQ, we have
successively:

LIXA1 = IQA1 = KQA1 = KAA1;

hence XI is parallel to AK.
On the other hand, the segments XM, LI being equal and parallel

to A1U, the line LM is parallel to XI; hence LM is the Simson line
of Q (§ 289). Similarly for Q'. Hence the proposition.
698. COROLLARY. The Feuerbach points of a triangle are the orthopoles,
for that triangle, of the circumdiameters passing through the tritangent
centers (§ 648).
699. Theorem. I f a line passes through the orthocenter of a triangle, the
symmetric of the orthopole of this-line with respect to the line lies on the
nine-point circle.

The projections B', C' of the vertices B, C of the triangle ABC
(Fig. 156) upon a line m = B'HC' passing through the orthocenter H

A

of ABC lie on the circles (Q), (R) having BH, CH for diameters. If
M is the orthopole of m, the lines B'M, C'M are perpendicular to
AC, AB (§ 689) and therefore respectively parallel to BH, CH, i.e.,
B'M, C'M are the symmetrics, with respect to m, of the lines B'Q, C'R
joining B', C' to the centers Q, R of (Q), (R).

Let us now show that the point U = (B'Q, C'R) lies on the nine-
point circle (N) of ABC. The diametrical opposites B", C" of B', C'
on (Q), (R) lie on the perpendicular to m at H, and we have:
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LQUR = B"UR = UC"B" + UB"C" = UC"B" + QB"H
= RC"H + QB"H = RHC" + QHB" = QHR = QDR;

hence the four points U, D, Q, R are concydic. But the foot D of the
altitude AD and the Euler points Q, R lie on the nine-point circle (N)
of ABC; hence the proposition.

EXERCISES

1. Show that the orthocenter of a triangle is the orthopole of the sides with respect
to the triangle.

2. Through the orthogonal projections of the vertices of a triangle ABC upon a
given line m parallels are drawn to the respective sides of ABC forming a tri-
angle A'B'C'. Show that the orthopole of m for ABC is concyclic with the
points A', B', C'.

3. The line joining the orthopoles M, M1 of a line m with respect to a triangle and
its medial triangle A,B1C, meets m in a point G' such that MG' = 2 G'M,.
Show that the point G' is the projection upon m of the centroid G of ABC.

4. If A', B', C' are the projections of the vertices of a triangle ABC upon a given
line, show that the perpendiculars from the midpoints of the segments B'C',
C'A', A'B' upon the respective sides of ABC are concurrent.

5. Show that (a) the distance between the orthopoles of the two bisectors of the
same angle of a triangle is equal to the circumdiameter (b) if a chord PQ of
the circumcircle (0) of a triangle ABC is perpendicular to BC, the distance
between the orthopoles of the lines AP, AQ is equal to PQ.

6. Show that the orthopole of a line for a triangle is the radical center of the three
circles tangent to the given line and having for centers the vertices of the anti-
complementary triangle of the given triangle.

SUPPLEMENTARY EXERCISES

1. P and Q are any pair of isogonal conjugates with respect to a triangle ABC.
If AQ cuts the circumcircle in 0, and OP cuts BC in R, show that QR is parallel
to AP.

2. If 0 and G are the circumcenter and the centroid of the triangle ABC, and Oa,
Ob, 0, the circumcenters of the triangles GBC, GCA, GAB, show that the points
0 and G are respectively the centroid and the Lemoine point of the triangle
O,ObOa.

3. If B'C' is the antiparallel to BC, in the triangle ABC, passing through the foot
of the symmedian issued from A, show that the polar of A for the circle having
BC for diameter passes through the orthocenters of the triangles ABC, AB'C'.

4. If DEF is the orthic triangle of the triangle ABC, and X', Y', 2' are the sym-
metrics, with respect to the symmedian point K of ABC, of the projections X,
Y, Z of K upon BC, CA, A B, show that X', Y', Z' are the Lemoine points of the
triangles AEF, BFD, CDE.
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5. A variable triangle has a fixed circumcircle and a fixed centroid. Show that the
locus of the Lemoine point is a circle.

6. A variable triangle has a fixed circumcircle and a fixed symmedian point. Show
that the locus of the centroid is a circle.

7. If P and P', Q and Q' are pairs of isogonal conjugate points, show that the
points R = (PQ, P'Q'), R' = (PQ', P'Q) are also isogonal conjugates.

8. Show that the isogonal conjugate of the Nagel point is collinear with the cir-
cumcenter and the incenter of the triangle.

9. Show that the reciprocal transversals of two rectangular circumdiameters of a
triangle meet on the polar of the circumcenter with respect to the nine-point
circle.

10. Show that the symmetric, with respect to a side of a given triangle, of the corre-
sponding vertex of the cosymmedian triangle is the isogonal conjugate of the foot
of the perpendicular from the circumcenter upon the symmedian considered.

11. Construct a triangle given, in position, the traces of its medians on the circum-
circle.

12. Construct a triangle given, in position, its second Brocard triangle.
13. Show that the symmetrics, with respect to the sides of a triangle, of the traces

of the corresponding medians on the circumcircle form a triangle homothetic to
the second Brocard triangle of the given triangle.

14. Show that the lines joining the corresponding vertices of the two Brocard tri-
angles of a given triangle meet in the centroid of the given triangle.

15. M is any point in the plane of a triangle ABC. If MA, MB, MC cut the cir-
cumcircle again in A', B', C', and D, E, F are the projections of M upon BC,
CA, AB, show that the triangles A'B'C', DEF are directly similar and that M
in A'B'C' corresponds with the isogonal conjugate of M in DEF. Use this
proposition to demonstrate the existence of cosymmedian triangles having the
sides of each proportional to the medians of the other.

16. Show that the circumcenter of a triangle is the centroid of the antipedal tri-
angle of the Lemoine point of the given triangle.

17. Show that the trilinear polar of a point on the circumcircle of a triangle passes
through the symmedian point of the triangle.

18. Show that (a) the line joining the Lemoine point of a triangle to the orthocenter
passes through the Lemoine point of the orthic triangle; (b) the four lines join-
ing the symmedian points of an orthocentric group of triangles to the corre-
sponding orthocenters are concurrent.

19. The midpoint A' of the side BC of the triangle ABC is also the midpoint of the
segment MN intercepted on a line through A' by the two isogonal lines AM,
AN. If the lines BN, CN meet AM in E, F, show that the tangents at B and
C to the circles ABE, ACF meet on AN.

20. Let D, E be the projections of the vertex A of the triangle ABC upon the side
BC and upon the mediator A'E of this side. Show that the line DE passes
through the vertex A2 of the second Brocard triangle and that
AB2 + AC2.

21. The Brocard points of a triangle are fixed and the value of the Brocard angle is
equal to one-half of an angle of the triangle. Show that the vertices of the
triangle describe straight lines.
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22. Construct an isosceles triangle given, in position, any three of the following
five points: a vertex, the centroid, the Lemoine point, the two Brocard points.

23. If a variable point P describes a circle concentric with a given equilateral tri-
angle ABC, show that the Brocard angle of the pedal triangle of P for ABC is
constant.

24. If the orthocenter of a triangle lies on the Brocard circle, show that the triangle
is equilateral.

25. P, Q, R and P', Q', R' are the images of the Brocard points on the sides of the
triangle ABC. Prove that (a) the triangles PQR, P'Q'R' have a common
Brocard circle, whose center is the symmedian point of ABC; (b) they also,have
a common first Lemoine circle which is identical with the second Lemoine circle
of ABC; (c) the radical axes of the circumcirdes of these three triangles are their
Brocard diameters.

26. If a line through the symmedian point K of the triangle ABC meets the sides
BC, BA in the points D, E so that DK = KE, and Q is the second point of inter-
section of the circurncircle of the triangle DBE with the circle having AB for
diameter, prove that the points B, C, Q, and one of the Brocard points of ABC
are concyclic.
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In these notes the following abbreviations (in bold italics) refer to
the abbreviations listed.

A. BOOKS

Chl. Michel Chasles (1793-1880), Traite de glomdtrie superieure (Paris,
1852; 2nd ed., 1889).

Cn. E. Catalan (1814-1894), TheorPmes el probUmes de geometrie elementaire
(6th ed.; Paris, 1879. 1st ed., 1852).

Crt. L. N. M. Carnot (1753-1823), de position (Paris, 1803).
Ech. A. Emmerich (1856-1915), Die Brocardschen Gebilde (Berlin, 1891).
Gy. William Gallatly, The Modern Geometry of the Triangle (2nd ed.;

London, 1922).
LHr. Simon A. J. LHuilier (1750-1840), Elemens d'analyse glometrique et

d'analyse algebrique appliquees d la recherche des lieux giometriques
(Paris and Geneva, 1809)

Pt. Jean Victor Poncelet (1788-1867), Traite des proprietes projectives des
figures (Paris, 1822; 2nd ed., 1865).

J?ouche. Rouch et Comberousse, Traite de geometrie, I (7th ed., 1900; 1st ed.,
Paris, 1864). The note on the geometry of the triangle (pp. 445-515)
was contributed by J. Neuberg.

B. PERIODICALS

Bull. Bulletin des sciences mathemaiiques et physiques lllrnentaire (Paris,
1895-1906). Founded by B. Niewenglowski, edited by L. Gerard
and Ch. Michel.

Edinb. Proceedings of the Edinburgh Mathematical Society (1894- ).
ET. Mathematical questions and solutions from the Educational Times

(Reprints, London, 1863-1918).
GAM. Annales de mathematiques (1810-1832). Founded and edited by J. D.

Gergonne (1771-1859).
JME. Journal de mathdmaaiques tlernentaires (1877-1897).
JMS. Journal de mathematiques speciales (1882-1897). This periodical and

the preceding one were founded by J. Bourget (1822-1887) and
continued by G. de Longcbamps (1842-1906).

Mathesis. Mathesis (1881- ). Founded and edited by Paul Mansion
(1844-1919) and J. Neuberg (1840-1926). Continued by Ad.
Mineur (1867-1950) and Ronald Deaux (1893- ). Ghent, Brus-
sels, Mons.
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Monthly. American Mathematical Monthly (1894- ). Founded by B. F.
Finkel (1865-1947). Since 1916 the official organ of the Mathe-
matical Association of America.

NA. Non vanes annales de mat iiques (1842-1927). Founded by O. Ter-
quem (1782-1862) and C. Gerono (1799-1892).

NC. Nouvelle correspondence mathtmatique (1874-1880). Founded and
edited by E. Catalan (1814-1894).

(The numbers in these notes correspond to those of the articles in this book.)

4. The analytical method of solving construction problems was developed by
the Greek philosopher Plato and his school. The credit is usually given to the
master.

6. JME. (1880), p. 19, Q. 153.
7. E. N. Barisien, Mathesis, 1922, p. 43, Q. 2047.
S. Cn , p 57, prob. 3.

11. The notion of a geometrical locus arose and developed in Plato's school in
connection with the study of construction problems. See Note 4

Apollonius of Perga wrote a book Plane Loci in which all the loci mentioned in
this article were included. This book has not come down to us. It was restored
by Robert Simson (1687-1768) under the title, The loci plani of apollonius restored,
Edinburgh, 1749, according to the indications found in the Mathematical Collection
of Pappus (300 A n )

11, locus 4. The term "mediator" was introduced by the Belgian mathematician
J. Neuberg.

11, locus 11. Pappus in his Collection states that Apollonius made use of this
circle in his book Plane Loci; hence the name circle of Apollonius or A pollonian circle.

12. Ignacio Beyens, JME. (1888), p. 238, Q. 255.
13. Cn., p 57, prob 4.
14. Ignacio Beyens, JME (1888), p. 236, Q. 252.
15. LHr., p 221, ex 8

Cn , p 59, prob 9
17. LHr , p 212, art. 132.

Cn , p 59, prob 9.
18. LHr, p. 218

Cu , p 60, prob 10.
24-30 (Chapter II, A). The builders of the pyramids made practical use of

similar figures in connection with their constructions Legend and tradition credit
Thales (600 s c) with the use of similar figures in indirect measurements of inac-
cessible heights The first theoretical considerations of similar figures go back to
Hippocrates of Chios (440 s c ).

28. JME (1882), p. 39, Q 368.
31-53 (Chapter II, B). Similar figures similarly placed were considered by J. V.

Poncelet
The term homothetic is attributed to Michel Chasles, CAM, XVIII (1827-1828),

p. 220
42. W. J. Greenstreet, ET., LV (1891), p. 52, Q. 10,672.
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43. I. Alexandrov, Geometrical Construction Problems (Russian, first ed., 1882;
French translation, 1899; German translation, 1903), p. 78, art. 289. (1934).

J. S. MacKay (1843-1914), Edinb. II (1883-1884), pp. 5 and 27.
Frank Morley (1860-1937), ET., LXIX (1898), p. 93, Q. 9367.
44. I. Alexandrov, op. cit., p. 99, art. 371. Mathesis (1929), p. 379, note 37.
47. LHr., p. 39, art. 28.
51-52. LHr., p. 45, art. 29. Co., p. 81, prob. 48.
53. LHr., p. 44, art. 30. Cochez, ET., III (1903), p. 50, Q. 15017.
54. This construction is given by Pappus of Alexandria in Mathematical Collec-

tion (third century A.D.).
59. If the reciprocals of three numbers a, b, c form an arithmetic progression,

then b is said to be the harmonic mean of a and b. It is readily verified that the
segment CD is the harmonic means of segments AD, BD (art. 346); hence the term
"harmonic points." The term "harmonic" was used by the Greeks.

62. Pt., Sec. I, chap. I, art. 30, p. 16.
JME. (1881), p. 311, Q. 290.

67. LHr., p. 199, ex. 8. The geometrical method of solving quadratic equations
was used by the Greeks.

70. Sanjana. ET., V (1904), p. 61, Q. 15238.
73. J. Mention, NA., IX (1850), p. 326.
76. Cn., p. 65, prob. 20. R. Ivengur, ET., LXI (1894), p. 64, Q. 11986.
77. A. Emmerich, Mathesis (1901), p. 162, note 14.
78. Bull., IX (1908-1909), pp 297-299, Q. 1444.
81. E. N. Barisien, Bull., III (1897-1898), p. 114, Q. 342.
83. JME. (1882), p. 15, Q. 352.
84. Considered by Pappus in his Mathematical Collection. LHr., p. 241, remark 2.
85, 86. These formulas occur in the works of the Hindu astronomer Brahmagupta

(7th century).
88. The property was known to Archimedes. It is given explicitly by Heron of

Alexandria in his Mechanica, p. 190. (First century A.D.)
90. Cn., p. 13, prob. 5. A. E. A. Williams, ET., LXIII (1895), p. 49, Q. 12550.
91, 92. NA. (1863), pp. 93 and 419.
93. Anonymous, Bull., XI (1905-1906), p. 232, Q. 1669.
95. 0. Delhez, Mathesis (1926), p. 95, note 10.
98. The term "complementary point" was proposed by Hain, Grunert's Archiv

(1885), p 214.
100, 101. Ch. H. Nagel (1803-1882), Untersuchungen ueber die wichtigsten zum

Dreiech gehaerigen Kreise (1836).
The term "anticomplementary point" was proposed by Longchamps, JME.

(1886), p. 131.
104. Charruit, Bull., VIII (1902-1903), p. 119, Q. 437.
108. Crt., p. 321, art. 281.
109. A. M. Nesbit, ET XXIII (1913), pp. 36-37, Q. 17309. This is a special

case of a more general formula. See Crt., pp. 316-317, art. 274, th. 26.
110. Georges Dostor, NA. (1883), p. 369.
112, 113. A. Lascases, NA. (1859), pp. 171, 265, Q. 477. ET., LXIV (1896),

p. 58, Q. 12801.
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114. L. M. Kelly, Monthly, LI (1944), p. 390, QE., 613.
115. This problem was proposed in 1840 by D. C. Lehmus (1780-1863) to

J. Steiner (1796-1867). See N. A.-C., Mathematical Gazette, XVIII (1934), p.120.
V. (1882- ), Scripta Mathematica, XV (1949), pp. 87-88.

116. The proposition was known in the Pythagorean school (600 B.C.).
118-120, 121-124. Cn., p. 46, th. 21. N. A.-C., Monthly, XXV (1918), pp. 241-

242.
127. G. H. Hopkins, ET., XVI (1872), p. 59, Q. 3500. C. Bourlet, Bull.,

II (1896-1897), p. 187, Q. 196.
130. JME. (1880), p. 542, Q. 229.
131-174. The inscribed circle is considered in Euclid's Elements, but the interest

in the escribed circles awakened only in the beginning of the 19th century. Thus
LHr., p. 198, rem. I, mentions all three escribed circles.

The term "tritangent circles" came into use during the second quarter of the
20th century.

132. The formula is given by Heron of Alexandria (first century) in his Mechanica.
134. Mahieu in 1807. LHr., p. 224.
135-137. Anonymously, GAM., XIX (1828-1829), p. 211. W(illiam) W(allace),

Cambridge Math. J., I (1839), pp. 21-22. 0. Terguem, NA., II (1843), p. 554.
145. Karl Wilhelm Feuerbach (1800-1834), Eigenschaften einiger merkwuerdigen

Punkte des geradelinigen Dreiecks and mehrerer durch Sie bestimmter Linien and
Figuren (Nuernberg, 1822, p. 4. Sec. ed., Berlin, 1908.)

146. Crt., p. 168.
149. Anonymous, Bull., VI (1900-1901), p. 235, Q. 904.
150. Anonymous, Mathesis (1898), p. 79, QE. 824.
151. LHr., p. 219. N. A: C., Mathesis (1929), p. 251, note 19. Bibliography.
153. Simon LHuilier, GAM., I (1810-1811), p. 157.
157-158. LHr., pp. 214-215.
159-163. Cn., pp. 44-46, th. 20.
166. Cf. Cn., p. 47, prop. 22 (proof).
168. Anonymous, Bull., X (1904-1905), p. 220, Q. 1594.
169. Cochez, ET., I (1902), p. 36, Q. 14772.
175. The proposition is not included in the Elements of Euclid. It is found in

the writings of Archimedes (287-212 B.C.) in an indirect form, and explicitly in
Proclus (410-485), a commentator of Euclid.

176. The term "orthocenter" was first used by W. H. Besant in Conk Sections
Treated Geometrically, 1869.

177. Crt., p. 187, art. 153.
178-180. Carrot, De la correlation des figures geometriques (Paris, 1801), pp. 101 if.
181. J. Steiner, Gesammelte Werke, I, p. 345.
182. J. Ardueser, Geometriae theoricae et practicae (1627), p. 149.

Cn., p. 195, prob. 15.
184. Crt., p. 187, art. 151.
185. The term "antiparallel" in its present sense is used by A. Arnauld (1612-

1694) in his Nouveaux E16ments de G6om6trie (1667).
Crt., p. 187, art. 151.

186. L. N. M. Carrot, De la correlation des figures g6ometriques, p. 101, Paris,1801.
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192. Ph. Naud6 (1654-1729) in 1737.
Cn., p. 27, Pr. 1. -

195. Crt., p. 163, art. 131.
196. H. D. Drury, ET., XXVIII (1915), p. 59, Q. 17521.
199. James Booth, JME. (1879), p. 236. A. Causse, Bull., I (1895-1896),

pp. 23-24, gives corresponding formulas for an obtuse angled triangle.
200. Janculescu, Mathesis (1913), p. 111, Q. Ex. 1625.
201. Leonhard Euler (1707-1783), Proceedings of the St. Petersburg Academy of

Sciences (1765). The proof is analytic. First geometric proof Crt., pp. 163-164,
art. 131.

203. G. Dostor, NA. (1883), p. 369.
205. A. Gob, "Sur Is droite et le circle d'Euler," Mathesis (1889), Supplement,

p. 1, art. 1.
207, 208. In 1765, in the Proceedings of St. Petersburg (Leningrad) Academy of

Sciences, Leonhard Euler showed that, in modern terminology, the circumcircle of
the orthic triangle of a given triangle is also the circumcircle of the medial triangle.

In a joint paper by Ch. J. Brianchon and J. V. Poncelet, published in GAM.,
XI (1820-1821), pp. 205 if., the authors not only rediscovered the Euler circle
(th. IX, p. 215), but showed that this circle also passes the Euler points of the
triangle. See D, E. Smith (Editor), A Source Book in Mathematics (New York,
1929), pp. 337-338.

Many writers rediscovered Euler's circle, both before and after Brianchon and
Poncelet. Among them was Feuerbach. (See note 145.) He missed the Euler
points.

Poncelet calls this circle the nine-point circle, and that is the name commonly
used in the English-speaking countries. Most of the French writers, however,
prefer to call it the Euie circle. In Germany the circle is consistently referred to
as the Feuerbach circle.

211. A. Gob, "Sur in droite et le cercle d'Euler," Mathesis (1889), Supplement,
p. 2, art. 2.

212. 0. Delhez, Mathesis (1915), p. 110, note 10.
214. A. Droz-Farny, ET., XVI (1894), p. 42, Q. 12157. JME. (1894), p. 214,

Q. 537.
215, 216, 217. Feuerbach, art. 57 (see note 145). The proof is by computation,

involving trigonometry. See note 207, D. E. Smith, pp. 339-345.
E. H. Neville, Mathematical Gazette, XIXI (1937), p. 127.

218. Mascart, ET., LX1II (1895), p. 46, Q. 10228.
219. Mathesis (1902), p. 48, Q. 1309.
220. Crt., p. 162, art. 130.
The term "orthocentric group of points" was introduced by Longchamps, Mathesis

(1888), p. 210.
223. Crt., p. 163.
224, 225. Sarkar, ET., LVII (1892), p. 82, Q. 11269. Mathesis (1928), p. 436,

Q. Ex. 52,
225-228. N. A.-C., Monthly, XXVII (1920), pp. 199-202.
233. E. N. Barisien, NA., pp. 485-486, Q. 1538.
235. William Gallatly, ET., XVI (1909), p. 46.
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236. R. Goormaghtigh, Mathesis (1933), pp. 120-121, note 10.
240. Pierre Varignon, Elements de mwthematiques (1731; 2nd ed., 1734, p. 62).

Cn., p. 9, th. 11.
242. J. D. Gergonne, GAM., I (1810-1811), pp. 232, 311.

Co., p. 9, th. 12.
246. Crt., p. 328. Carnot attributes the proposition to Euler.
248. Crt., p. 327, art. 290, th. 29.
249. Cn., p. 14, prob. 8.

W. J. C. Miller, ET., LXIV (1896), p. 70, Q. 12649.
250. Co., p. 69, prob. 27.
255. The proposition is included in the Almagest, a famous work on astronomy

by Claudius Ptolemy.
Crt., p. 270, art. 212, 1°.

256. A special case of this problem preoccupied Regiomontanus (Johannes
Meuller, 1436-1476) in 1464.

The first ruler and compass construction was given by Fr. Vi6te in 1540.
The problem has been the object of considerable attention.

LHr., p. 255, art. 140.
257. Part b. was known to Regiomontanus (see note 256).

Crt., p. 270, art. 212, 2°.
Part d. G. Fontene, Bull., IX (1903-1904), p. 147.

258. H. D. Drury. ET., LXV (1896), p. 107, Q. 13127. Auguste Deteuf, NA.
(1908), p. 443, prop. 2°.

260. J. Neuberg, Mathesis (1924), p. 314, art. 38.
261. Jules Mathot, Mathesis (1901), pp. 25-26. A. Deteuf, NA. (1908), p. 443,

prop. 3°.
263. E. Lemoine, NA. (1869), pp. 47, 174, 317. Jules Mathot, Mathesis (1901),

pp. 25-26. A. Deteuf, NA. (1908), p. 447.
264. Thomas Dobson, ET., I (1864), p. 34, Q. 1431.
265. J. Neuberg, NC., I (1874), pp. 96, 198. Frank V. Morley, Monthly (1917),

p. 124, Q. 511.
266, 267. N. A.-C., Monthly, XXV (1918), pp. 243-246. L. Droussent, "Sur le

quadrilatere inscriptible," Mathesis, LXVI (1947), pp. 93-95.
268-269. The circumscriptible quadrilateral was first considered in the thirteenth

century by Jordanus Nemorarius.
270. J. B. Durrande, GAM., VI (1815-1816), p. 49.
278-280. Co., p. 134, th. 47; p. 129, th. 61; pp. 135, 136, th. 48.
281. Crt., p. 165, art. 132. Cn., p. 129, th. 61 corollary.
282, 283. The proposition was given by William Wallace (1768-1873) in 1799,

in the Mathematical Repository. F. J. Servois, in 1814, referred to the line as the
Simson line (after Robert Simson, 1687-1768). This was obviously a slip, as is
apparent from the dates involved. Moreover, the line has not been found in the
writings of Simson, at least not up to the present. But the name Simson line re-
mains in use, by tradition and force of habit.

284. F. J. Servois, GAM., IV (1813-1814), p. 250. The proof is analytic.
286, 287. J. G., NA. (1871), p. 206.
288, 289. Heinen, Crelle's Journal, III (1828), pp. 2°5-287.
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290. J. Steiner, GAM., XVIII (1827-1828). No proof. W. F. Walker, Quarterly
Journal of Mathematics, VIII (1867), p. 47.

292. Philippe de la Hire, Nouveaux elements des sections coniques, p. 196. Solved
by the use of conics.

LHr., pp. 220-221. This solution involves trigonometric computations.
N. A.-C., Monthly (1927), p. 161, rem. IV, bibliography.

293. J. Steiner, Crelle's Journal, LEI (1857), p. 237. W. H. Besant, Quarterly
Journal of Mathematics, X (1870), p. 110.

294. C. E. Youngman, ET., LXXV (1901), p. 107.
296, 297. J. Alison, Edinb., III (1885), p. 86.
298. Ad. Mineur, Mathesis (1929), p. 330, note 34.
299. J. Steiner, GAM., XVIII (1827-1828), p. 302. No proof.
302, 303. J. G., NA. (1871), p. 206.
304. E. Lemoine, NA. (1869), pp. 47, 174, 317.

Weill, JMS. (1884), p. 13, th. III.
W. F. Beard, ET., VI (1904), p. 57, note.

306, 307. Negative segments came into use in geometry during the 17th century
due to Albert Girard (1595-1632), Rent Descartes (1596-1650), and others. The
systematic use of negative quantities in geometry was established by L. N. M.
Carnot, and by A. F. Moebius, Barycentrische Calcul (1827).

The term "transversal" was introduced by Carnot.
308. Matthew Stewart (1717-1785), Some General Theorems of Considerable

Use in the Higher Parts of Mathematics. Edinburgh, 1746. No proof is given.
The proposition was rediscovered and proved by Thomas Simpson (1710-1761)
in 1751, by L. Euler in 1780, and by L. N. M. Carnot in 1803 (Crt., p. 265,
th. 2).

310. Menelaus, a Greek astronomer of the first century A.D., wrote a book of
spherics in which this proposition was included. But the Greek original was lost,
and the book came down to us only in the Hebrew and Arabic translations. How-
ever, the proposition became known through Ptolemy's Almagest (see note 255),
where it was quoted.

Crt., p. 276, art. 219.
321, 322. G. de Longchamps, NA. (1866), pp. 118-119.
323. E. Lemoine, JME. (1890), p. 47, Q. 300.
324. Ernesto Cesiro, NC., VI (1880), p. 472, Q. 573. Sanjana, ET., XXVIII

(1915), p. 33, Q. 17036; p. 35, Q. 17539.
326. Giovanni Ceva, De lineis rectis se invicem secantibus (Milan, 1678).

Crt., p. 281, th. 7.
330, 331. J. D. Gergonne, GAM., IX (1818-1819), p. 116.
332, 333. Ch. Nagel (see note 100), p. 32, art. 99.
334. E. Vigarit, JME. (1886), p. 158.
335. G. de Longchamps, NA. (1866), p. 124, prop. 4.
336. The term is due to John Casey, Mathesis (1889), p. 5, Sec. I., prob. 3.
337, 338. G. de Longchamps, JME., p. 92, Q. 94.
340, 341. J. D. Gergonne, GAM., IX (1818-1819), p. 277.
342. H. Van Aubel, Mathesis (1882), Q. 128. See also N. Plakhowo, Bull., V

(1899-1900), p. 289.



302 HISTORICAL AND BIBLIOGRAPHICAL NOTES

343. Girard Desargues (1593-1662). The proposition is found in the writings
(1648) of a follower of Desargues and is attributed by the pupil to the master.
D. E. Smith (see note 207), p. 307.

The proposition is given, without indication of source, by F. J. Servois in his
"Solutions peu counues ...... p. 23 (Paris, 1804), and by Poncelet, Pt., p. 89, who
attributes it to Desargues.

344. The term "homological" was proposed by Poncelet.
345. See chap. iii, arts. 54-62.
346, 347. Pt., Sec. I, chap. i, art. 30, p. 16.
348. See notes 59, 54.
351, 352. Pt., Sec. I, chap. i, art. 27, p. 14.
353. LHr., p. 94, rein. 1.
354. The term harmonic pencil was used by Brianchon in 1817.
355. Pappus' Collection.
358. Pt., Sec. I, chap. ii., art. 76, pp. 41-42.
360. Cn., p. 104, th. 21.
362. P. H. Schoute, Academy of Amsterdam, III, p. 59.

J. Griffiths, ET., LX (1894), p. 113, Q. 12113.
363. Orthogonal circles were considered in the early nineteenth century by

Gaultier, Poncelet, Durrande, Steiner, and others.
368. Pt., p. 43, art. 79.
372. N. A.-C., Monthly (1934), p. 500.
373-392. The theory of poles and polars had its beginnings in the study of har-

monic points and pencils. Some properties of polar lines may be found in the
writings of both Apollonius and Pappus.

This theory was developed in considerable detail by Girard Desargues in his
treatise on conic sections entitled Brouillon projet dune atteinte aux lnemens des
rencontres d'un cone aver un plan (Paris, 1639), and by his follower Philippe de la
Hire.

The major elaboration of the theory took place in the first half of the nineteenth
century in connection with the study of conic sections in projective geometry.

The term pole (art. 372) was first used by F. J. Servois, GAM., I (1810-1811),
p. 337. Two years later J. D. Gergonne suggested the term polar line in his own
GAM., III (1812-1813), p. 297.

386, 387. J. B. Durrande, GAM., XVI (1825-1826), p. 112.
393, 394, 395. LHr., p. 41, rem. 8. The ancient Greeks were familiar with the

centers of similitude of two circles. See R. C. Archibald, Monthly (1915), pp. 6-12;
(1916), pp. 159-161.

397. Pt., p. 130, art. 242.
398. Rebuffel, Bull., V (1899-1900), p. 113.
400, 401. Pt., pp. 139, 140, art. 262.

Chl., pp. 504-505, art. 725.
402,404. Chl., p. 520, art. 743. See also GAM., XI (1820-1821), p. 364, and

XX (1829-1830), p. 305.
405, 406, 407. Gaspar Monge, Geomarie descriptive, pp. 54-55 (1798).
409. Chl., p. 541, art. 770.
410. The power of a point with respect to a circle was first considered by Louis
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Gaultier in a paper published in the Journal de L'Lcole Polyttcknique, Cahier 16
(1813), pp. 124-214. Gaultier uses here for the first time the terms radical axis
(p. 147) and radical center (p. 143). However, the term power (Potenz) was first
used by J. Steiner.

412. Steiner. See note 410.

421, 422. Gaultier. See note 410.
425. Crt., p. 347, art. 305. Pt., Sec. I, chap. ii, art. 71, p. 40, footnote. Poncelet

ascribes the proposition to his teacher Gaspar Monge.
429. Pt., Sec. I, chap, ii, art. 82, p. 44.
434. Pt., p. 123, art. 249, 2°.
436. Pt., pp. 133-134, art. 250, 2°.
437. Cf. Pt., p. 134, art. 251.
438. N. A.-C., Monthly (1932), p. 193.
439. Chl., p. 501, art. 716.
440. Coaxal circles were considered early in the nineteenth century by Gaultier,

Poncelet, Steiner, and others.
447. Pt., Sec. I, chap. ii, art. 76, pp. 41, 42.
448. Pt., Sec. 1, chap. ii, art. 79, p. 43.
453-457. Gaultier. See note 410. Pt., Sec. I, chap. ii, arts. 73, 74, p. 41.
460. Pt., Sec. I, chap. ii, art. 87, p. 44.
463. N. A.-C., Mathesis XLII (1828), p. 158.
464-466. N. A.-C., Annals of Matk., XXIX (1928), p. 369, art. 2.
471, 472. John Casey, A Sequel to Euclid (6th ed., 1900), VI, Sec. V, pp. 113-114.
This is a very useful proposition. A. Droz-Farny shows in JME. (1895), pp. 242-

245, that most of the properties of the radical axis given in Chl. are corollaries of
Casey's theorem.

477, 480. Chl., p. 520, art. 747.
481. N. A.-C., Monthly, XXXIX (1932), p. 56, Q. 3477.
491, 492. Gaultier. See note 410.
494. J. B. Durrande, GAM., XVI (1825-1826), p. 112.
495. Cf. J. Neuberg, Madhesis (1925), p. 37, Q. 2225.
496. Vecten and Durrande, GAM., XI (1820-1821), p. 364.
499-501. See note 438.
502, 503. Cf. N. A.-C., Modern Pure Solid Geometry (New York, 1935), pp. 205,

206, arts. 641, 642.
505. Cl. Servais, Matheris (1891), p. 238, Q. 717
508. E. Lemoine, JME. (1874), p. 21.
516. The problem was included in the book De lactionihus by Apollonius. This

book has not come down to us. It was restored by Francois Vibte (Francis Vieta).
The solution of the problem of Apollonius as given in this restoration is reproduced
here.

This problem has interested many great mathematicians, including Descartes
and Newton.

518. Inverse points were known to Francois Vihte. Robert Simson in his
restoration of a lost book of Apollonius on geometrical loci (see note 11) included
one of the basic theorems of the theory of inversion (art. 523). LHuilier in LHr.
gives the two special cases of this theorem (arts. 521, 523).
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The theory of inversion as a method of studying and transforming geometrical
figures is largely a product of the second quarter of the nineteenth century. Among
the outstanding contributors to the elaboration of this theory may be named
Poncelet, Steiner, Quetelet, Pluecker (1801-1868), Moebius, Liouville, and William
Thompson (Lord Kelvin).

533. In 1864 in a letter to the editors of the Nouvelles annales de mathimatiques
(p. 414) A. Peaucellier (1832-1913) suggested to the readers of that periodical the
idea of finding a linkage (compas compose) which would draw rigorously a straight
line by a continuous motion. From the remarks made in that letter it is readily
inferred that Peaucellier himself was in possession of such an instrument.

In 1867 A. Mannheim (1831-1906) formally announced, without description,
Peaucellier's invention at a meeting of the Paris Philomathic Society. The first
paper on the linkage was not published by Peaucellier until 1873 (NA., pp. 71-73).

In the meantime, Lipkin, a young man of St. Petersburg (Leningrad), redis-
covered the linkage and a description of it appeared in the Bulletin of the St. Peters-
burg Academy of Sciences, XVI (1781), pp. 57-60. See R. C. Archibald, Outline
of the History of Mathematics, p. 99, note 280, published in 1949 by the Mathematical
Association of America.

535. J. Tummers, Mathesis (1929), p. 130, Q. 2515.
536. See note 255.
537. R. C. J. Nixon, ET., LV (1891), p. 107, Q. 10693.
547, 548. J. J. A. Mathieu, NA. (1865), p. 399. E. Lemoine, Association Fran-

caise pour 1'Avancement des Sciences (1884).
The term trilinear polar is due to Mathieu. The term harmonic polar was pro-

posed by Longchamps, JMS. (1886), p. 103.
558-586 (Lemoine Geometry). In 1873, Emile Lemoine read a paper before the

Association Francaise pour l'Avancement des Sciences entitled "Sur quelques
propri6t6s d'un point remarquable du triangle." The paper appeared in the Pro-
ceedings, pp. 90-91, and was also published in NA. (1873), pp. 364-366. It included
the articles 561, 572, 573, 588, 589, 592, 593, 594. No proofs were given. The
paper may be said to have laid the foundations not only of Lemoinian Geometry,
but also of the modern geometry of the triangle as a whole.

The basic point of Lemoinian geometry (art. 570) Lemoine called the center of
antiparallel medians; J. Neuberg named it the Lemoine point. sur le

The Belgian Academy, 1884, p. 3; Supplement to Mathesis, 1885). This
point was met with by a number of writers before Lemoine, in connection with
its various properties. LHuilier encountered it in 1809 (LHr., p. 296).

In 1847 Grebe was led to this point through the property of ex. 10, p. 257.
The proposition of art. 583 was found by Catalan in 1852. In 1862, O. Schloemilch
chanced upon the theorem art. 586.

Lemoine through his numerous papers brought to light the great abundance of
geometrical properties connected with this point and this invested it with an im-
portance rivaling that of the centroid and the orthocenter in the study of the
geometry of the triangle.

558. The term symmedian was proposed by Maurice d'Ocagne, NA. (1883),
p. 451, as a substitute for the term antiparallel median used by Lemoine, NA.
(1873), p. 364.
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585. Ad. Mineur, Matkesis (1934), p. 257. A. Droz-Farny, ET., LXI (1894),
p. 90, Q. 12223.

586. Schloemilch. See note 558.
588. The method of proof used in this article originated with Brianchon and

Poncelet. See D. E. Smith (note 207), pp. 337, 338.
592. R. Tucker, Proceedings of the London Math. Soc., XVIII (1886-1887), p. 3;

Mathesis (1887), p. 12.
E. Lemoine (1873), NA., p. 365, prop. 4°.

596. E. Lemoine, JME. (1894), p. 112, Q. 442.
597. See note 11, locus 11. J. Neuberg, Mathcsis (1885), p. 204.
600. Vecten, GAM., X (1819-1820), p. 202.
601. J. Neuberg, Mothesis (1885), p. 204. Rouchb, p. 475.
604, 605. N. A.-C., Tohoku Mathematical Journal, XXXIX (1934), Part 2,

p. 264, art. 1.
609-614. N. A.-C., "On the Circles of Apollonius," Monthly, XXII (1915),

pp. 304-305. Mathesis (1926), p. 144.
621, 622. Sollertinski, Mathesis (1894), p. 116, Q. 841.
624. E. Lemoine, Mathesis (1902), p. 147. N. A.-C., Mathesis (1927), note 49, 2°.
625. The isogonal relation was first considered by J. J. A. Mathieu, NA. (1865),

pp. 393 if.
Most of the arts. 625-644 are given by Emile Vigari in JME. (1885), pp. 33 if.
635. Mathieu (see note 625), p. 400.
638. Bull., I (1895-1896), p. 73, Q. 77.
644. Cf. N. A.-C., Modern Pure Solid Geometry, p. 244, art. 750.
646,647, 648. K. Sivaraj, Mathematics Student, XIII (1945), p. 69. V. Thl;bault,

Mathesis, LVI (1947), p. 31. See note 215.
649. In 1875 (NA., pp. 192, 286, Q. 1166) H. Brocard stated a characteristic

property of the two points which now bear his name. As in the case of the Lemoine
point (see note 558) the Brocard points bad been encountered by previous writers.
But in 1881 Brocard read a paper before the Association Francaise pour 1'Avance-
ment des Sciences under the title Nouveau circle du plan du triangle (art. 666)
which brought out numerous properties of the Brocard points, and thus established
Brocard's reputation as the co-founder of the modern geometry of the triangle.

The name of J. Neuberg (Liege, Belgium) is generally associated with those of
Lemoine and Brocard as the third co-founder of this branch of geometry.

652. The name Brocard points is attributed to A. Morel, JME. (1883), p. 70.
656, 659, 661, 663. Ech., p. 25, art. 12.3°; p. 77, art. 3; p. 29, art. 15.1° p. 36,

an. 16.1°.
666. The term Brocard circle was suggested by A. Morel, JME. (1883), p. 70.
669. H. Brocard, ET., LIX (1893), p. 50, Q. 11638; JME. (1893), p. 69, Q. 437.
670a. Gy., p. 106, art. 150.
670b. Neuberg, Rouchf, p. 480, art. 42.
671. C. Jonescu-Bujor, Mathesis (1938), p. 360, note 36, 3°.
672, 673, 674. Neuberg, p. 480, art. 42.
675. Ech., p. 90, art. 43, V.
676. Mathesis (1889), p. 243, no. I. A. Emmericb, ET., XIII (1908), p. 88,

Q. 9992.
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677. Neuberg, Rouch6, p. 480, art. 41.
678, 679. The proposition is due to J. Neuberg, "Sur le point de Steiner," JMS.

(1886), p. 29, 1°, where he identified the point R with one which J. Steiner had con-
sidered in a different connection (Crelle, XXXII, 1846, p. 300).

The name Steiner point is due to Neuberg, Mathesis (1885), p. 211.
680. Gaston Tarry, Mathesis (1884), Supplement.
681. The term was introduced by J. Neuberg, Mathesis (1886), p. 5.
684, 685. R. Tucker (1832-1905), "On a Group of Circles," Quarterly Journal of

Mathematics, XX (1885), p. 57.
Some circles of this group were found by other writers, before Tucker. Lemoine

(arts. 588, 594), Taylor (art. 689).
The name Tucker circles is due to Neuberg, "Sur les cercles de Tucker," ET.,

XLIII (1885), pp. 81-85.
689. H. M. Taylor, "On a Six-Point Circle Connected with a Triangle," Messenger

of Math., LXXVII (1881-1882), pp. 177-179. However, Taylor was anticipated
by others. See NC., VI (1880), p. 183; National Math. Magazine, XVIII (1943-
1944), p. 40-41.

691. J. Neuberg, NC., II (1875), pp. 189, 316, Q. 111; IV (1878), p. 379; E.
Lemoine, JME. (1884), p. 51.

692. The term orthopole was proposed by Neuberg, Mathesis (1911), p. 244.
694. M. Soons, Mathesis (1896), p. 57.
697. Gy., p. 49, art. 75.
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Homothecy (see also Similitude) 38-43,
46, 48, 68, 69, 70, 97, 103, 113, 120,
142, 148, 149, 228, 232, 271, 272, 282,
284, 286, 292

Homothetic center (see also Center of
similitude) 39-41, 46, 70, 121, 122,
125, 184, 272, 282, 284, 286
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of a triangle 262, 263, 265, 266, 267
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Points, 270-275, 291, 292
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Lemoine antiparallels 259
Lemoine axis 253,254,262-266,280,284
Lemoine first circle 258, 280, 285, 293
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284, 293
Lemoine parallels 258, 260
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127,135,146,149,171,177,182,193-
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Medial triangle 68, 69, 70, 72, 96, 108,
113, 116, 120, 158, 161, 260, 284, 291
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Menelaus' Theorem 154-160, 163
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N

Nagel point 160-162, 165, 292

Nine-point
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146,189,193, 196, 205, 216, 228, 241,
243, 260, 272, 273, 288, 290, 292

Non-intersecting type (of coaxal circles)
202, 203, 206, 207, 209, 241

0
Orthic

Axis 155, 196, 205, 246
Triangle 97,98-100,102,103, 112-114,

119, 120, 149, 163, 221, 246, 260,
286, 291, 292

Orthocenter 94, 95, 96, 99-101,105,108,
109, 111-113, 115, 118-122, 132, 135,
142, 145, 148, 149, 153, 165, 182-184,
189, 193, 194, 216, 221, 228, 229, 243,
246, 255, 256, 270, 286, 288, 290, 291,
292, 293

Orthocentric
Group of points 109, 111, 112, 177
Group of triangles 109-111, 114, 292
Quadrilateral 109-114

Orthodiagonal quadrilateral 136-138
Orthogonal center (of three circles), see

Radical center
Orthogonal circle (of three circles) 217-

219, 240.
Orthogonal circles 174-177, 180, 181,

183, 189, 192-195, 197, 200, 201, 204,
205, 207, 209, 210, 215, 216, 228, 229,
234, 237, 242, 261, 265

Orthopole 287-291

P
Pappus problem 63
Peaucellier's cell 236
Pedal circle (of two isogonal points) 271,

272
Pedal line, see Simson
Pedal triangle 173, 254, 257, 270, 271,

278.
Perspective triangles, see Homological

triangles
Point-circle 191, 195, 203, 215
Polar circle 182, 183, 194, 241
Polar line 177-184, 196, 200, 204, 207,

210, 217, 229, 248, 262, 263, 284, 292
Polar triangle 181, 182, 241
Pole (of Simson line) 141, 142
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Pole (of a line for a circle) 178-184, 227,
253, 263

Pole (of a line for a triangle), see Tri-
linear pole

Polygons, similar and similarly placed
38

Ptolemy's theorem 128, 130, 238
Power of a point (for a circle) 191-194,

202, 204, 212, 215, 217

Q

Quadrilateral 124-139

R

Circle of 187, 188, 189, 199, 214, 218,
219, 243, 267

External center of 185, 189
Internal center of 185, 189
Ratio of, see Homothetic ratio

Simson line or simson 140-149, 158,165,
252, 273, 284, 288, 289

Square 2, 8, 22, 30, 32, 34, 35, 43, 45, 46,
229, 252, 257

Steiner point 282, 284
Stewart's theorem 152
Symmedian 247 265, 269, 281, 283-286,

291, 292
External, see External

Symmetry 40, 109, 112, 114, 149, 165,
Radical axis

of two circles 194-201, 211, 217, 218,
232, 243, 260, 280, 284, 293

199,200
Center of 40, 112, 132

of a pencil of circles 201-217, 262, 267 T
Radical center of three circles 217, 219,

220 240 271 274 291
Tangential triangle 98, 102, 104, 165,

, , , ,
183 241 242 254 274Radical circle (of two circles) 215-217

Radius vector of a point 230, 231, 235
Ratio of similitude, see Similitude
Reciprocal transversals 156, 157, 158,

165 292

, , , ,
Tarry point 283, 284
Taylor circle 287
Transversal reciprocal,, see Reciprocal
Trilinear polar 244, 245-247, 292

,

S
Trilinear pole 244, 245-247, 254
Tritangent

Self-conjugate triangle, see Polar center or centers 73-78, 111, 112, 115,
120 134 177116-118 165 171triangle , ,, , , ,

189 190 229 242 247Self-Polar triangle, see Polar triangle
Similar and similarly placed polygons 38

, , , ,

Circle or circles, 72-93, 105, 116-118,
158 184 194 197 216 221 273

Similitude
, , ,, , ,

Radius or radii 78-86 115 116-118Axis of 188 220 , , ,
,

Center of (see also Homothetic center) Tucker circle 284, 285-287

39,111,184-190,200,213,214,219,
W220, 223, 224, 229, 234, 241, 243,

247, 263, 264, 266 Wallace line, see Simson
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